Alina Galeyeva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2061544/publications.pdf

Version: 2024-02-01

1684188 1281871 16 113 5 11 citations g-index h-index papers 16 16 16 201 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Electrodeposition of polymer electrolyte in nanostructured electrodes for enhanced electrochemical performance of thin-film Li-ion microbatteries. Journal of Power Sources, 2017, 340, 242-246.	7.8	34
2	Sputtered Porous Li-Fe-P-O Film Cathodes Prepared by Radio Frequency Sputtering for Li-ion Microbatteries. Scientific Reports, 2019, 9, 11172.	3.3	25
3	Enhanced Electrochemical Performance of Electropolymerized Self-Organized TiO2 Nanotubes Fabricated by Anodization of Ti Grid. Frontiers in Physics, 2019, 7, .	2.1	20
4	Electrodeposition of Polymer Electrolyte Into Porous LiNi0.5Mn1.5O4 for High Performance All-Solid-State Microbatteries. Frontiers in Chemistry, 2019, 6, 675.	3.6	12
5	Temperature Effects on the Behavior of Lithium Iron Phosphate Electrodes. Russian Journal of Electrochemistry, 2019, 55, 194-199.	0.9	6
6	Synthesis, structure and electrochemical performance of Eldfellite, NaFe(SO4)2, doped with SeO4, HPO4 and PO3F. Journal of Solid State Chemistry, 2020, 289, 121395.	2.9	6
7	Effect of the MoS2 surface layer on the kinetics of intercalation processes in the NaFe(SO4)2/C composite. Materials Today Communications, 2021, 28, 102723.	1.9	3
8	Methods for Determination of the Degree of Iron Oxidation in LiFePO4. Applied Sciences (Switzerland), 2017, 7, 981.	2.5	2
9	Chemical Oxidation of LiFePO4 in Aqueous Medium as a Method for Studying Kinetics of Delithiation. Russian Journal of Electrochemistry, 2018, 54, 225-233.	0.9	2
10	Processes at nanoelectrodes: general discussion. Faraday Discussions, 2018, 210, 235-265.	3.2	1
11	Active Layer Thickness Effect on the Behavior of Electrodes Based on Lithium Iron Phosphate. Russian Journal of Electrochemistry, 2019, 55, 200-205.	0.9	1
12	Effect of Current Density on Electrodeposition of Nickel-Organic Microcapsules Composite Coatings. Eurasian Chemico-Technological Journal, 2014, 16, .	0.6	1
13	Energy conversion at nanointerfaces: general discussion. Faraday Discussions, 2018, 210, 333-351.	3.2	0
14	Electrochemical synthesis and research of nanotubes of titanium dioxide as an anode material for lithium-ion battery. Chemical Bulletin of Kazakh National University, 2014, , 18-24.	0.1	0
15	Application of a conversion electrode based on decomposition derivatives of Ag ₄ [Fe(CN) ₆] for aqueous electrolyte batteries. RSC Advances, 2022, 12, 9862-9867.	3.6	0
16	Enhancing Electrochemical Performance of Stretchable/Flexible Liâ€lon Microbatteries by Tuning Microstructured Electrode Dimensions. Advanced Materials Interfaces, 0, , 2102541.	3.7	0