Maria Paz Zafra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2061292/publications.pdf

Version: 2024-02-01

643344 591227 1,134 30 15 27 citations h-index g-index papers 35 35 35 2512 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Revealing ARID1A Function in Gastric Cancer from the Bottom Up. Cancer Discovery, 2021, 11, 1327-1329.	7.7	3
2	Adenine base editing in an adult mouse model of tyrosinaemia. Nature Biomedical Engineering, 2020, 4, 125-130.	11.6	136
3	An <i>In Vivo Kras</i> Allelic Series Reveals Distinct Phenotypes of Common Oncogenic Variants. Cancer Discovery, 2020, 10, 1654-1671.	7.7	71
4	Lineage Reversion Drives WNT Independence in Intestinal Cancer. Cancer Discovery, 2020, 10, 1590-1609.	7.7	52
5	Detection of Marker-Free Precision Genome Editing and Genetic Variation through the Capture of Genomic Signatures. Cell Reports, 2020, 30, 3280-3295.e6.	2.9	7
6	GO: a functional reporter system to identify and enrich base editing activity. Nucleic Acids Research, 2020, 48, 2841-2852.	6.5	27
7	<i>In situ CRISPRâ€Cas9 base editing for the development of genetically engineered mouse models of breast cancer. EMBO Journal, 2020, 39, e102169.</i>	3.5	40
8	Distinct Colorectal Cancer–Associated APC Mutations Dictate Response to Tankyrase Inhibition. Cancer Discovery, 2019, 9, 1358-1371.	7.7	54
9	Base editing the mammalian genome. Methods, 2019, 164-165, 100-108.	1.9	14
10	Optimized base editors enable efficient editing in cells, organoids and mice. Nature Biotechnology, 2018, 36, 888-893.	9.4	269
11	Abstract LB-040: New conditional Kras-alleles generated by CRISPR-based genome editing to model tumor initiation. , 2018, , .		0
12	Abstract LB-089: Targeting WNT signalingin vivovia Tankyrase inhibition. , 2018, , .		0
13	Mutation affecting the proximal promoter of Endoglin as the origin of hereditary hemorrhagic telangiectasia type 1. BMC Medical Genetics, 2017, 18, 20.	2.1	22
14	R-Spondin chromosome rearrangements drive Wnt-dependent tumour initiation and maintenance in the intestine. Nature Communications, 2017, 8, 15945.	5.8	97
15	Asthma Due to Swiss Chard: Identification of a New Allergen. Journal of Investigational Allergology and Clinical Immunology, 2017, 27, 67-68.	0.6	2
16	Somatic Genome Editing Goes Viral. Trends in Molecular Medicine, 2016, 22, 831-833.	3.5	2
17	Exosome secretion by eosinophils: AÂpossible role in asthma pathogenesis. Journal of Allergy and Clinical Immunology, 2015, 135, 1603-1613.	1.5	99
18	Allergy to short-acting \hat{l}^2 2-agonists in a COPD patient: Is an immunological mechanism involved?. Allergologia Et Immunopathologia, 2015, 43, 329-330.	1.0	1

#	Article	IF	CITATIONS
19	SOCS3 Silencing Attenuates Eosinophil Functions in Asthma Patients. International Journal of Molecular Sciences, 2015, 16, 5434-5451.	1.8	17
20	Simulated gastrointestinal digestion reduces the allergic reactivity of shrimp extract proteins and tropomyosin. Food Chemistry, 2015, 173, 475-481.	4.2	41
21	Exosomes Secretion By Eosinophils: A Possible Role In Asthma Pathogenesis. Journal of Allergy and Clinical Immunology, 2014, 133, AB58.	1.5	0
22	New shrimp IgEâ€binding proteins involved in miteâ€seafood crossâ€reactivity. Molecular Nutrition and Food Research, 2014, 58, 1915-1925.	1.5	65
23	Gene Silencing of SOCS3 by siRNA Intranasal Delivery Inhibits Asthma Phenotype in Mice. PLoS ONE, 2014, 9, e91996.	1.1	34
24	Misregulation of suppressors of cytokine signaling in eosinophilic esophagitis. Journal of Gastroenterology, 2013, 48, 910-920.	2.3	12
25	Misregulation of Suppressors of Cytokine Signaling in Eosinophilic Esophagitis. Journal of Allergy and Clinical Immunology, 2013, 131, AB131.	1.5	0
26	Acute generalized exanthematic pustulosis due to ibuprofen. Annals of Allergy, Asthma and Immunology, 2013, 110, 386-387.	0.5	10
27	Dissociation of actin polymerization and lipid raft accumulation by ligation of the Inducible Costimulator (ICOS, CD278). Inmunologia (Barcelona, Spain: 1987), 2012, 31, 4-12.	0.1	2
28	Biased binding of class IA phosphatidyl inositol 3-kinase subunits to inducible costimulator (CD278). Cellular and Molecular Life Sciences, 2011, 68, 3065-3079.	2.4	16
29	Suppressors of Cytokine Signaling 3 Expression in Eosinophils: Regulation by PGE ₂ and Th2 Cytokines. Clinical and Developmental Immunology, 2011, 2011, 1-11.	3.3	17
30	Gene Expression Profiling in Lungs of Chronic Asthmatic Mice Treated with Galectin-3: Downregulation of Inflammatory and Regulatory Genes. Mediators of Inflammation, 2011, 2011, 1-9.	1.4	16