
Philippe Buhlmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2061034/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 1. General Characteristics. Chemical Reviews, 1997, 97, 3083-3132.	47.7	2,191
2	Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 2. Ionophores for Potentiometric and Optical Sensors. Chemical Reviews, 1998, 98, 1593-1688.	47.7	1,812
3	Potentiometric Selectivity Coefficients of Ion-Selective Electrodes. Part I. Inorganic Cations (Technical Report). Pure and Applied Chemistry, 2000, 72, 1851-2082.	1.9	923
4	Selectivity of Potentiometric Ion Sensors. Analytical Chemistry, 2000, 72, 1127-1133.	6.5	777
5	Rational design of all-solid-state ion-selective electrodes and reference electrodes. TrAC - Trends in Analytical Chemistry, 2016, 76, 102-114.	11.4	409
6	Polymer Membrane Ion-Selective Electrodes-What are the Limits?. Electroanalysis, 1999, 11, 915-933.	2.9	298
7	Ion Gels by Self-Assembly of a Triblock Copolymer in an Ionic Liquidâ€. Journal of Physical Chemistry B, 2007, 111, 4645-4652.	2.6	288
8	Ion-Selective Electrodes with Three-Dimensionally Ordered Macroporous Carbon as the Solid Contact. Analytical Chemistry, 2007, 79, 4621-4626.	6.5	255
9	Strong hydrogen bond-mediated complexation of H2PO4â^' by neutral bis-thiourea hosts. Tetrahedron, 1997, 53, 1647-1654.	1.9	228
10	Anion recognition by urea and thiourea groups: Remarkably simple neutral receptors for dihydrogenphosphate. Tetrahedron Letters, 1995, 36, 6483-6486.	1.4	214
11	Effects of Humic and Fulvic Acids on Silver Nanoparticle Stability, Dissolution, and Toxicity. Environmental Science & Technology, 2015, 49, 8078-8086.	10.0	211
12	Ionic Liquids as Electrolytes for Electrochemical Double-Layer Capacitors: Structures that Optimize Specific Energy. ACS Applied Materials & Interfaces, 2016, 8, 3396-3406.	8.0	175
13	The phase-boundary potential model. Talanta, 2004, 63, 3-20.	5.5	173
14	Ion-Selective Electrodes with Colloid-Imprinted Mesoporous Carbon as Solid Contact. Analytical Chemistry, 2014, 86, 7111-7118.	6.5	171
15	A Chloride Ion-Selective Solvent Polymeric Membrane Electrode Based on a Hydrogen Bond Forming Ionophore. Analytical Chemistry, 1997, 69, 1038-1044.	6.5	160
16	Paper-Based Potentiometric Ion Sensing. Analytical Chemistry, 2014, 86, 9548-9553.	6.5	140
17	Cationic or Anionic Sites? Selectivity Optimization of Ion-Selective Electrodes Based on Charged Ionophores. Analytical Chemistry, 2000, 72, 1618-1631.	6.5	138
18	Three-Dimensionally Ordered Mesoporous (3DOm) Carbon Materials as Electrodes for Electrochemical Double-Layer Capacitors with Ionic Liquid Electrolytes. Chemistry of Materials, 2013, 25, 4137-4148.	6.7	134

#	Article	IF	CITATIONS
19	Hierarchically Porous Polymer Monoliths by Combining Controlled Macro- and Microphase Separation. Journal of the American Chemical Society, 2015, 137, 8896-8899.	13.7	133
20	Redox-Active Self-Assembled Monolayers for Solid-Contact Polymeric Membrane Ion-Selective Electrodes. Chemistry of Materials, 2002, 14, 1721-1729.	6.7	106
21	Redox-active self-assembled monolayers as novel solid contacts for ion-selective electrodes. Chemical Communications, 2000, , 339-340.	4.1	105
22	Modification of Silicon Nitride Tips with Trichlorosilane Self-Assembled Monolayers (SAMs) for Chemical Force Microscopy. Langmuir, 1997, 13, 4323-4332.	3.5	103
23	Potentiometric selectivity coefficients of ion-selective electrodes. Part II. Inorganic anions (IUPAC) Tj ETQq1 1 0.7	'84314 rgE 1.9	3T/Overlock
24	Application of a bis-thiourea ionophore for an anion selective electrode with a remarkable sulfate selectivity. Analytica Chimica Acta, 1998, 358, 35-44.	5.4	102
25	Effects of Architecture and Surface Chemistry of Three-Dimensionally Ordered Macroporous Carbon Solid Contacts on Performance of Ion-Selective Electrodes. Analytical Chemistry, 2010, 82, 680-688.	6.5	102
26	Origin of Non-Nernstian Anion Response Slopes of Metalloporphyrin-Based Liquid/Polymer Membrane Electrodes. Analytical Chemistry, 2000, 72, 5766-5773.	6.5	98
27	Sequential shape-and-solder-directed self-assembly of functional microsystems. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12814-12817.	7.1	98
28	Getting More out of a Job Plot: Determination of Reactant to Product Stoichiometry in Cases of Displacement Reactions and <i>n</i> : <i>n</i> Complex Formation. Journal of Organic Chemistry, 2011, 76, 8406-8412.	3.2	97
29	Electrochemical Detection of a One-Base Mismatch in an Oligonucleotide Using Ion-Channel Sensors with Self-Assembled PNA Monolayers. Electroanalysis, 2000, 12, 1272-1276.	2.9	90
30	Highly Selective Detection of Silver in the Low ppt Range with Ion-Selective Electrodes Based on Ionophore-Doped Fluorous Membranes. Analytical Chemistry, 2010, 82, 7634-7640.	6.5	90
31	All-Solid-State Reference Electrodes Based on Colloid-Imprinted Mesoporous Carbon and Their Application in Disposable Paper-based Potentiometric Sensing Devices. Analytical Chemistry, 2015, 87, 2981-2987.	6.5	89
32	Redox Potential and Câ^'H Bond Cleaving Properties of a Nonheme FeIVâ•O Complex in Aqueous Solution. Journal of the American Chemical Society, 2010, 132, 7638-7644.	13.7	88
33	A Disposable Planar Paperâ€Based Potentiometric Ionâ€5ensing Platform. Angewandte Chemie - International Edition, 2016, 55, 7544-7547.	13.8	88
34	An Ion-Selective Electrode for Acetate Based on a Urea-Functionalized Porphyrin as a Hydrogen-Bonding Ionophore. Analytical Chemistry, 1999, 71, 1049-1054.	6.5	87
35	Solid Contact Ion-Selective Electrodes with a Well-Controlled Co(II)/Co(III) Redox Buffer Layer. Analytical Chemistry, 2013, 85, 9350-9355.	6.5	87
36	Studies on the phase boundaries and the significance of ionic sites of liquid membrane ion-selective electrodes. Electroanalysis, 1995, 7, 811-816.	2.9	86

#	Article	IF	CITATIONS
37	Fluorous Bulk Membranes for Potentiometric Sensors with Wide Selectivity Ranges:Â Observation of Exceptionally Strong Ion Pair Formation. Journal of the American Chemical Society, 2005, 127, 8958-8959.	13.7	85
38	Calibration-Free Ionophore-Based Ion-Selective Electrodes With a Co(II)/Co(III) Redox Couple-Based Solid Contact. Analytical Chemistry, 2014, 86, 8687-8692.	6.5	83
39	Donnan Exclusion Failure of Neutral Ionophore-Based Ion-Selective Electrodes Studied by Optical Second-Harmonic Generation. Analytical Chemistry, 1997, 69, 1919-1924.	6.5	76
40	Characterization of silver ion dissolution from silver nanoparticles using fluorous-phase ion-selective electrodes and assessment of resultant toxicity to Shewanella oneidensis. Chemical Science, 2013, 4, 2564.	7.4	75
41	Calibration-free potentiometric sensing with solid-contact ion-selective electrodes. TrAC - Trends in Analytical Chemistry, 2021, 140, 116277.	11.4	75
42	Voltammetric Detection of the Polycation Protamine by the Use of Electrodes Modified with Self-Assembled Monolayers of Thioctic Acid. Analytical Chemistry, 1999, 71, 5109-5115.	6.5	74
43	Co-Ion Interference for Ion-Selective Electrodes Based on Charged and Neutral Ionophores:  A Comparison. Analytical Chemistry, 1998, 70, 4291-4303.	6.5	72
44	Development of an ion-channel sensor for heparin detection. Analytica Chimica Acta, 2000, 411, 163-173.	5.4	72
45	EMF response of neutral-carrier based ion-sensitive field effect transistors with membranes free of ionic sites. Electrochimica Acta, 1995, 40, 3021-3027.	5.2	70
46	A Phase Boundary Potential Model for Apparently "Twice-Nernstian―Responses of Liquid Membrane Ion-Selective Electrodes. Analytical Chemistry, 1998, 70, 445-454.	6.5	67
47	Scanning Tunneling Microscopy with Chemically Modified Tips:  Discrimination of Porphyrin Centers Based on Metal Coordination and Hydrogen Bond Interactions. Analytical Chemistry, 2001, 73, 878-883.	6.5	67
48	Ion-Channel-Mimetic Sensing of Hydrophilic Anions Based on Monolayers of a Hydrogen Bond-Forming Receptor. Analytical Chemistry, 1999, 71, 1183-1187.	6.5	66
49	Fluorous Membrane Ion-Selective Electrodes for Perfluorinated Surfactants: Trace-Level Detection and in Situ Monitoring of Adsorption. Analytical Chemistry, 2013, 85, 7471-7477.	6.5	64
50	Chemical Sensing with Chemically Modified Electrodes that Mimic Gating at Biomembranes Incorporating Ion-Channel Receptors. Electroanalysis, 1998, 10, 1149-1158.	2.9	63
51	Subnanomolar detection limit application of ion-selective electrodes with three-dimensionally ordered macroporous (3DOM) carbon solid contacts. Journal of Solid State Electrochemistry, 2009, 13, 123-128.	2.5	63
52	Potentiometric Sensors Based on Fluorous Membranes Doped with Highly Selective Ionophores for Carbonate. Journal of the American Chemical Society, 2011, 133, 20869-20877.	13.7	62
53	Coordinative Properties of Highly Fluorinated Solvents with Amino and Ether Groups. Journal of the American Chemical Society, 2005, 127, 16976-16984.	13.7	57
54	Advantages and Limitations of Reference Electrodes with an Ionic Liquid Junction and Three-Dimensionally Ordered Macroporous Carbon as Solid Contact. Analytical Chemistry, 2012, 84, 7771-7778.	6.5	56

#	Article	IF	CITATIONS
55	Unbiased Quantification of the Electrochemical Stability Limits of Electrolytes and Ionic Liquids. Journal of the Electrochemical Society, 2015, 162, A2250-A2258.	2.9	56
56	Avoiding Errors in Electrochemical Measurements: Effect of Frit Material on the Performance of Reference Electrodes with Porous Frit Junctions. Analytical Chemistry, 2016, 88, 8706-8713.	6.5	55
57	Polypyrrole-Modified Tips for Functional Group Recognition in Scanning Tunneling Microscopy. Analytical Chemistry, 1999, 71, 1699-1705.	6.5	54
58	Scanning Tunneling Microscopy Using Chemically Modified Tips. Analytical Chemistry, 1998, 70, 255-259.	6.5	53
59	Design and Application of Ion-Channel Sensors Based on Biological and Artificial Receptors. Bulletin of the Chemical Society of Japan, 2002, 75, 187-201.	3.2	52
60	Formation of gold nanoparticles on multiwalled carbon nanotubes by thermal evaporation. Carbon, 2008, 46, 1966-1972.	10.3	52
61	In Situ Sensing of the Neurotransmitter Acetylcholine in a Dynamic Range of 1 nM to 1 mM. ACS Sensors, 2018, 3, 2581-2589.	7.8	52
62	Fluorophilic Ionophores for Potentiometric pH Determinations with Fluorous Membranes of Exceptional Selectivity. Analytical Chemistry, 2008, 80, 2084-2090.	6.5	50
63	Electrostatically-Induced Inclusion of Anions in Cyclodextrin Monolayers on Electrodes. Langmuir, 2000, 16, 1388-1396.	3.5	48
64	Fluorous Polymeric Membranes for Ionophore-Based Ion-Selective Potentiometry: How Inert Is Teflon AF?. Journal of the American Chemical Society, 2009, 131, 1598-1606.	13.7	48
65	Hydrogen bond based recognition of nucleotides by neutral-carrier ion-selective electrodes. Analytica Chimica Acta, 1997, 341, 129-139.	5.4	45
66	Influence of Calcium and Phosphorus, Lactose, and Salt-to-Moisture Ratio on Cheddar Cheese Quality: pH Buffering Properties of Cheese. Journal of Dairy Science, 2006, 89, 938-950.	3.4	44
67	Capacitive Sensing of Glucose in Electrolytes Using Graphene Quantum Capacitance Varactors. ACS Applied Materials & Interfaces, 2017, 9, 38863-38869.	8.0	44
68	Influence of Natural, Electrically Neutral Lipids on the Potentiometric Responses of Cation-Selective Polymeric Membrane Electrodes. Analytical Chemistry, 2001, 73, 3199-3205.	6.5	43
69	Potentiometric coefficients of ion-selective electrodes. Part III. Organic ions (IUPAC Technical) Tj ETQq1 1 0.784	314.ŗgBT /	Overlock 10
70	Reference Electrodes with Salt Bridges Contained in Nanoporous Glass: An Underappreciated Source of Error. Analytical Chemistry, 2013, 85, 8895-8901.	6.5	43
71	A Generalized Model for Apparently "Non-Nernstian―Equilibrium Responses of Ionophore-Based Ion-Selective Electrodes. 1. Independent Complexation of the Ionophore with Primary and Secondary Ions. Analytical Chemistry, 2003, 75, 3329-3339.	6.5	42
72	Dynamic silver speciation as studied with fluorous-phase ion-selective electrodes: Effect of natural organic matter on the toxicity and speciation of silver. Science of the Total Environment, 2015, 537, 453-461.	8.0	42

#	Article	IF	CITATIONS
73	Ionic Liquid Reference Electrodes With a Wellâ€Controlled Co(II)/Co(III) Redox Buffer as Solid Contact. Electroanalysis, 2015, 27, 602-608.	2.9	38
74	Redox Buffer Capacity of Ion-Selective Electrode Solid Contacts Doped with Organometallic Complexes. Analytical Chemistry, 2018, 90, 11000-11007.	6.5	37
75	Stress and Mental Health in Graduate School: How Student Empowerment Creates Lasting Change. Journal of Chemical Education, 2018, 95, 1939-1946.	2.3	37
76	Lifetime of Ion-Selective Electrodes Based on Charged Ionophores. Analytical Chemistry, 2000, 72, 1843-1852.	6.5	35
77	Cyanide-Selective Electrode Based on Zn(II) Tetraphenylporphyrin as Ionophore. Analytical Chemistry, 2012, 84, 9192-9198.	6.5	34
78	Electrochemical Reduction of 2,4-Dinitrotoluene in Aprotic and pH-Buffered Media. Journal of Physical Chemistry C, 2015, 119, 13088-13097.	3.1	33
79	Electrochemical Impedance Spectroscopy of Ion-Selective Membranes: Artifacts in Two-, Three-, and Four-Electrode Measurements. Analytical Chemistry, 2016, 88, 9738-9745.	6.5	33
80	Neutral hosts for the complexation of creatinine. Tetrahedron, 1993, 49, 7627-7636.	1.9	32
81	Scanning tunneling microscopy with chemically modified tips: orientation-sensitive observation of ether oxygens. Surface Science, 2001, 490, L579-L584.	1.9	32
82	Discrimination of functional groups with scanning tunneling microscopy using chemically modified tips: Recognition of ether oxygens through hydrogen bond interactions. Physical Chemistry Chemical Physics, 2001, 3, 1867-1869.	2.8	31
83	Glass and polymeric membrane electrodes for the measurement of pH in milk and cheese. Talanta, 2004, 63, 139-148.	5.5	31
84	Electrochemical Stability of Quaternary Ammonium Cations: An Experimental and Computational Study. Journal of the Electrochemical Society, 2016, 163, H74-H80.	2.9	31
85	Interaction of a Weakly Acidic Dinitroaromatic with Alkylamines: Avoiding the Meisenheimer Trap. Journal of the American Chemical Society, 2011, 133, 12858-12865.	13.7	30
86	Noncovalent Monolayer Modification of Graphene Using Pyrene and Cyclodextrin Receptors for Chemical Sensing. ACS Applied Nano Materials, 2018, 1, 2718-2726.	5.0	30
87	Ion-Selective Electrodes for Thiocyanate Based on the Dinuclear Zinc(II) Complex of a Bis-N,O-bidentate Schiff Base. Electroanalysis, 2004, 16, 973-978.	2.9	28
88	Optical sensors based on neutral carriers. Sensors and Actuators B: Chemical, 1993, 11, 1-8.	7.8	27
89	Characterization of a Deoxyguanosine Adduct of Tetrachlorobenzoquinone: Dichlorobenzoquinone-1,N2-etheno-2â€~-deoxyguanosine. Chemical Research in Toxicology, 2005, 18, 1770-1776.	3.3	27
90	Single-step electrochemical method for producing very sharp Au scanning tunneling microscopy tips. Review of Scientific Instruments, 2007, 78, 113703.	1.3	26

#	Article	IF	CITATIONS
91	Receptor-Based Detection of 2,4-Dinitrotoluene Using Modified Three-Dimensionally Ordered Macroporous Carbon Electrodes. ACS Applied Materials & Interfaces, 2012, 4, 4731-4739.	8.0	26
92	Donnan Failure of Ion-Selective Electrodes with Hydrophilic High-Capacity Ion-Exchanger Membranes. ACS Sensors, 2016, 1, 95-101.	7.8	26
93	Molecular recognition of creatinine. Tetrahedron, 1993, 49, 595-598.	1.9	25
94	Apparently "Non-Nernstian―Equilibrium Responses Based on Complexation Between the Primary Ion and a Secondary Ion in the Liquid ISE Membrane. Electroanalysis, 1999, 11, 687-693.	2.9	25
95	Effect of spacer geometry on oxoanion binding by bis- and tetrakis-thiourea hosts. Tetrahedron, 2008, 64, 2530-2536.	1.9	25
96	Ion-Selective Electrodes with Unusual Response Functions: Simultaneous Formation of Ionophore–Primary Ion Complexes with Different Stoichiometries. Analytical Chemistry, 2012, 84, 1104-1111.	6.5	25
97	Unbiased Assessment of Electrochemical Windows: Minimizing Mass Transfer Effects on the Evaluation of Anodic and Cathodic Limits. Journal of the Electrochemical Society, 2013, 160, A320-A323.	2.9	25
98	Self-Supporting, Hydrophobic, Ionic Liquid-Based Reference Electrodes Prepared by Polymerization-Induced Microphase Separation. ACS Sensors, 2017, 2, 1498-1504.	7.8	24
99	Solid-Contact Ion-Selective and Reference Electrodes Covalently Attached to Functionalized Poly(ethylene terephthalate). Analytical Chemistry, 2020, 92, 7621-7629.	6.5	24
100	Observation of Silver and Hydrogen Ion Binding to Self-Assembled Monolayers Using Chemically Modified AFM Tips. Langmuir, 1999, 15, 2788-2793.	3.5	23
101	Fluorescence-mediated sensing of guanosine derivatives based on multitopic hydrogen bonding. Chemical Communications, 1997, , 1027-1028.	4.1	22
102	Self-assembly of a tricarboxylate receptor through thioamide groups and its use for electrochemical detection of protonated amines. Journal of Electroanalytical Chemistry, 1999, 473, 105-112.	3.8	22
103	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1998, 32, 151-163.	1.6	20
104	Quenching Performance of Surfactant-Containing and Surfactant-Free Fluorophore-Doped Mesoporous Silica Films for Nitroaromatic Compound Detection. Chemistry of Materials, 2013, 25, 711-722.	6.7	20
105	A Disposable Planar Paperâ€Based Potentiometric Ion‣ensing Platform. Angewandte Chemie, 2016, 128, 7670-7673.	2.0	20
106	Elucidating the Role of AgCl in the Nucleation and Growth of Silver Nanoparticles in Ethylene Glycol. Crystal Growth and Design, 2018, 18, 324-330.	3.0	20
107	Ionic liquid-based reference electrodes for miniaturized ion sensors: What can go wrong?. Sensors and Actuators B: Chemical, 2019, 301, 127112.	7.8	20
108	Plasticization of amorphous perfluoropolymers. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 516-525.	2.1	19

#	Article	IF	CITATIONS
109	Chemical stability and application of a fluorophilic tetraalkylphosphonium salt in fluorous membrane anion-selective electrodes. New Journal of Chemistry, 2010, 34, 1867.	2.8	19
110	Paper-Based All-Solid-State Ion-Sensing Platform with a Solid Contact Comprising Colloid-Imprinted Mesoporous Carbon and a Redox Buffer. ACS Applied Nano Materials, 2018, 1, 293-301.	5.0	19
111	Ion-Channel – Mimetic Sensors Based on Self-Assembled Monolayers of Phosphate Esters: High Selectivity for Trivalent Cations. Mikrochimica Acta, 1999, 132, 55-60.	5.0	18
112	Preparation of a highly fluorophilic phosphonium salt and its use in a fluorous anion-exchanger membrane with high selectivity for perfluorinated acids. Journal of Fluorine Chemistry, 2008, 129, 961-967.	1.7	18
113	New Perspectives on Silver Nanowire Formation from Dynamic Silver Ion Concentration Monitoring and Nitric Oxide Production in the Polyol Process. Crystal Growth and Design, 2016, 16, 1861-1868.	3.0	18
114	Channel Mimetic Sensing Membranes for Nucleotides Based on Multitopic Hydrogen Bonding. Israel Journal of Chemistry, 1997, 37, 267-275.	2.3	17
115	Scanning Tunneling Microscopy with Chemically Modified Gold Tips:Â In Situ Reestablishment of Chemical Contrast. Analytical Chemistry, 2003, 75, 1089-1093.	6.5	17
116	Potentiometric <i>in Situ</i> Monitoring of Anions in the Synthesis of Copper and Silver Nanoparticles Using the Polyol Process. ACS Nano, 2015, 9, 12104-12114.	14.6	17
117	Electrochemistry in media of exceptionally low polarity: Voltammetry with a fluorous solvent. Journal of Electroanalytical Chemistry, 2010, 639, 154-160.	3.8	15
118	Current Pulse Based Reference Electrodes Without Liquid Junctions. Analytical Chemistry, 2013, 85, 3817-3821.	6.5	14
119	Fluorous-Phase Ion-Selective pH Electrodes: Electrode Body and Ionophore Optimization for Measurements in the Physiological pH Range. ACS Omega, 2020, 5, 13621-13629.	3.5	14
120	Molecular Resolution Images of a Calix[6]arene from Atomic Force Microscopy. Langmuir, 1995, 11, 635-638.	3.5	13
121	Cation-coordinating properties of perfluoro-15-crown-5. Journal of Fluorine Chemistry, 2010, 131, 42-46.	1.7	13
122	Potentiometric Selectivities of Ionophore-Doped Ion-Selective Membranes: Concurrent Presence of Primary Ion or Interfering Ion Complexes of Multiple Stoichiometries. Analytical Chemistry, 2019, 91, 2409-2417.	6.5	13
123	Recent progress in the development of improved reference electrodes for electrochemistry. Analytical Sciences, 2022, 38, 71-83.	1.6	13
124	Minimizing Hazardous Waste in the Undergraduate Analytical Laboratory: A Microcell for Electrochemistry. Journal of Chemical Education, 2010, 87, 1260-1261.	2.3	12
125	Reference Electrodes Based on Ionic Liquid-Doped Reference Membranes with Biocompatible Silicone Matrixes. ACS Sensors, 2020, 5, 1717-1725.	7.8	12
126	Cathodic Electropaint Insulated Tips for Electrochemical Scanning Tunneling Microscopy. Analytical Chemistry, 2007, 79, 9224-9228.	6.5	11

#	Article	IF	CITATIONS
127	Assessment of density functionals, semiempirical methods, and SCC-DFTB for protonated creatinine geometries. Computational and Theoretical Chemistry, 2008, 861, 68-73.	1.5	11
128	Easy-to-Make Capillary-Based Reference Electrodes with Controlled, Pressure-Driven Electrolyte Flow. ACS Sensors, 2021, 6, 2211-2217.	7.8	11
129	Bromine-Passivated Au(111) as a Platform for the Formation of Organic Self-Assembled Monolayers under Electrochemical Conditions. Langmuir, 2010, 26, 7133-7137.	3.5	10
130	Functionalized Mesoporous Polymers with Enhanced Performance as Reference Electrode Frits. ACS Applied Nano Materials, 2018, 1, 139-144.	5.0	10
131	More than a Liquid Junction: Effect of Stirring, Flow Rate, and Inward and Outward Electrolyte Diffusion on Reference Electrodes with Salt Bridges Contained in Nanoporous Glass. Analytical Chemistry, 2019, 91, 7698-7704.	6.5	10
132	Solid-Contact pH Sensor with Covalent Attachment of Ionophores and Ionic Sites to a Poly(decyl) Tj ETQq0 0 0 rg	BT Overlo	ock 10 Tf 50
133	Response Mechanism of Ionâ€5elective Electrodes Based on a Guanidine Ionophore: An Apparently †Twoâ€Thirds Nernstian' Response Slope. Electroanalysis, 2008, 20, 331-339.	2.9	9
134	Remediation of Perfluorooctylsulfonate Contamination by in Situ Sequestration: Direct Monitoring of PFOS Binding to Polyquaternium Polymers. ACS Omega, 2019, 4, 1068-1076.	3.5	9
135	Cleaning of pH Selective Electrodes with Ionophoreâ€doped Fluorous Membranes in NaOH Solution at 90 A°C. Electroanalysis, 2018, 30, 611-618.	2.9	8
136	Ion-Selective Potentiometric Sensors with Silicone Sensing Membranes: A Review. Current Opinion in Electrochemistry, 2021, 32, 100896.	4.8	8
137	Semifluorinated Polymers as Ionâ€selective Electrode Membrane Matrixes. Electroanalysis, 2017, 29, 739-747.	2.9	7
138	Critical Comparison of Reference Electrodes with Salt Bridges Contained in Nanoporous Glass with 5, 20, 50, and 100 nm Diameter Pores. Analytical Sciences, 2020, 36, 187-191.	1.6	7
139	Visible and FTIR Microscopic Observation of Bisthiourea Ionophore Aggregates in Ion-Selective Electrode Membranes. Electroanalysis, 2005, 17, 2019-2025.	2.9	6
140	Chemical sensing based on membranes with supramolecular functions of biomimetic and biological origin. Advances in Supramolecular Chemistry, 1997, , 211-285.	1.8	6
141	Ion Aggregation and R ₃ N ⁺ –C(R)–H··ANR ₃ Hydrogen Bonding in a Fluorous Phase. Journal of Physical Chemistry B, 2016, 120, 11239-11246.	2.6	5
142	Voltage-induced chemical contrast in scanning tunneling microscopy using tips chemically modified with hydrogen bond donors. Surface Science, 2011, 605, 1099-1102.	1.9	3
143	Self-assembled monolayers formed by 5,10,15,20-tetra(4-pyridyl)porphyrin and cobalt 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine on iodine-passivated Au(111) as observed using electrochemical scanning tunneling microscopy and cyclic voltammetry. Journal of Electroanalytical Chemistry, 2012, 664, 94-99.	3.8	3
144	Chemistry, 2012, 564, 94-99. One-dimensional ionic self-assembly in a fluorous solution: the structure of tetra-n-butylammonium tetrakis[3,5-bis(perfluorohexyl)phenyl]borate in perfluoromethylcyclohexane by small-angle neutron scattering (SANS). Physical Chemistry Chemical Physics, 2016, 18, 9470-9475.	2.8	3

#	Article	IF	CITATIONS
145	Indirect Potentiometric Determination of Polyquaternium Polymer Concentrations by Equilibrium Binding to 1-Dodecyl Sulfate. Analytical Sciences, 2019, 35, 679-684.	1.6	3
146	Electrochemical sensorsA report on the International Conference on Electrochemical Sensors, "Mátrafüred 05â€; held at Mátrafüred, Hungary, 13–18 November 2005. TrAC - Trends in Analytical Chemistry, 2006, 25, 93-95.	11.4	2
147	Glucose sensing with graphene varactors. , 2016, , .		2
148	Rethinking Graduate Recruitment Weekends in the Digital Age. Journal of Chemical Education, 2020, 97, 2544-2555.	2.3	2
149	Hydrogels Doped with Redox Buffers as Transducers for Ion-Selective Electrodes. Analytical Chemistry, 2022, 94, 1143-1150.	6.5	2
150	Lifting of the surface reconstruction of Au(111) as a sensitive probe to monitor adsorption of cyclodextrin and its complexes in halide solutions. Journal of Electroanalytical Chemistry, 2013, 693, 1-8.	3.8	1
151	Ultraclean Graphene Transfer Using a Sacrificial Fluoropolymer Nanolayer: Implications for Sensor and Electronic Applications. ACS Applied Nano Materials, 2020, 3, 11998-12007.	5.0	1
152	Potentiometric Sensors with Polymeric Sensing and Reference Membranes Fully Integrated into a Sampleâ€Wicking Polyester Textile. Analysis & Sensing, 0, , .	2.0	1
153	Chemical Sensing with Chemically Modified Electrodes that Mimic Gating at Biomembranes Incorporating Ion-Channel Receptors. , 0, .		1
154	Stress and Mental Health in Chemistry Graduate Education. ECS Meeting Abstracts, 2019, , .	0.0	1
155	Japan builds bridges to rest of the world. Nature, 1999, 402, 458-458.	27.8	0
156	Potentiometric sensors improve dramatically. TrAC - Trends in Analytical Chemistry, 2002, 21, XI-XIII.	11.4	0
157	Potentiometric Analyte Detection at the ppb and ppt Level Using Fluorous Sensing Membranes. ECS Meeting Abstracts, 2011, , .	0.0	0
158	Mátrafüred′ 11, International Conference on Electrochemical Sensors. Electroanalysis, 2012, 24, 11-12.	2.9	0
159	Mátrafüred 2017 International Conference on Electrochemical Sensors Electroanalysis, 2018, 30, 594-595.	2.9	0
160	Lipophilic Redox Buffers for Polymeric Solid-Contact Electrodes. ECS Meeting Abstracts, 2016, , .	0.0	0
161	(Invited) Ionophore-Doped Ion-Selective Electrode Membranes. ECS Meeting Abstracts, 2016, , .	0.0	0
162	Solid-Contact Ion-Selective Electrodes Comprising Hydrophobic Redox Buffers. ECS Meeting Abstracts, 2019, , .	0.0	0

#	Article	IF	CITATIONS
163	Comparison of the kinetics of aldehyde sensing by covalent bond formation with hydrazines and hydroxylamines. Tetrahedron, 2022, , 132852.	1.9	Ο