
Youdong Mao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2060909/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	USP14-regulated allostery of the human proteasome by time-resolved cryo-EM. Nature, 2022, 605, 567-574.	27.8	38
2	Asymmetric Structures and Conformational Plasticity of the Uncleaved Full-Length Human Immunodeficiency Virus Envelope Glycoprotein Trimer. Journal of Virology, 2021, 95, e0052921.	3.4	20
3	Structure, Dynamics and Function of the 26S Proteasome. Sub-Cellular Biochemistry, 2021, 96, 1-151.	2.4	64
4	AAA+ ATPases in Protein Degradation: Structures, Functions and Mechanisms. Biomolecules, 2020, 10, 629.	4.0	37
5	Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature, 2019, 570, 338-343.	27.8	467
6	Robustness of signal detection in cryo-electron microscopy via a bi-objective-function approach. BMC Bioinformatics, 2019, 20, 169.	2.6	4
7	DNA Origami as Scaffolds for Selfâ€Assembly of Lipids and Proteins. ChemBioChem, 2019, 20, 2422-2431.	2.6	13
8	Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome. Nature, 2019, 565, 49-55.	27.8	264
9	Frontispiz: Folding DNA into a Lipid onjugated Nanobarrel for Controlled Reconstitution of Membrane Proteins. Angewandte Chemie, 2018, 130, .	2.0	0
10	Structural mechanism for nucleotide-driven remodeling of the AAA-ATPase unfoldase in the activated human 26S proteasome. Nature Communications, 2018, 9, 1360.	12.8	74
11	Frontispiece: Folding DNA into a Lipid onjugated Nanobarrel for Controlled Reconstitution of Membrane Proteins. Angewandte Chemie - International Edition, 2018, 57, .	13.8	0
12	Folding DNA into a Lipid onjugated Nanobarrel for Controlled Reconstitution of Membrane Proteins. Angewandte Chemie, 2018, 130, 2094-2098.	2.0	11
13	Folding DNA into a Lipid onjugated Nanobarrel for Controlled Reconstitution of Membrane Proteins. Angewandte Chemie - International Edition, 2018, 57, 2072-2076.	13.8	36
14	Residues in the gp41 Ectodomain Regulate HIV-1 Envelope Glycoprotein Conformational Transitions Induced by gp120-Directed Inhibitors. Journal of Virology, 2017, 91, .	3.4	53
15	Conformational Landscape of the p28-Bound Human Proteasome Regulatory Particle. Molecular Cell, 2017, 67, 322-333.e6.	9.7	35
16	Cryo-EM structure of the DNA-PK holoenzyme. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7367-7372.	7.1	74
17	Evaluation of the contribution of the transmembrane region to the ectodomain conformation of the human immunodeficiency virus (HIV-1) envelope glycoprotein. Virology Journal, 2017, 14, 33.	3.4	11
18	Massively parallel unsupervised single-particle cryo-EM data clustering via statistical manifold learning. PLoS ONE, 2017, 12, e0182130.	2.5	44

Youdong Mao

#	Article	IF	CITATIONS
19	A deep convolutional neural network approach to single-particle recognition in cryo-electron microscopy. BMC Bioinformatics, 2017, 18, 348.	2.6	126
20	Molecular basis of caspase-1 polymerization and its inhibition by a new capping mechanism. Nature Structural and Molecular Biology, 2016, 23, 416-425.	8.2	135
21	Structural basis for dynamic regulation of the human 26S proteasome. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12991-12996.	7.1	147
22	Unsupervised Cryo-EM Data Clustering through Adaptively Constrained K-Means Algorithm. PLoS ONE, 2016, 11, e0167765.	2.5	7
23	Abstract B134:Cryo-EMstructure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. , 2016, , .		0
24	Comparative Analysis of the Glycosylation Profiles of Membrane-Anchored HIV-1 Envelope Glycoprotein Trimers and Soluble gp140. Journal of Virology, 2015, 89, 8245-8257.	3.4	99
25	Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science, 2015, 350, 404-409.	12.6	347
26	Reply to Subramaniam, van Heel, and Henderson: Validity of the cryo-electron microscopy structures of the HIV-1 envelope glycoprotein complex. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4178-82.	7.1	19
27	The Highly Conserved Layer-3 Component of the HIV-1 gp120 Inner Domain Is Critical for CD4-Required Conformational Transitions. Journal of Virology, 2013, 87, 2549-2562.	3.4	49
28	Molecular architecture of the uncleaved HIV-1 envelope glycoprotein trimer. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12438-12443.	7.1	101
29	A Twin-Cysteine Motif in the V2 Region of gp120 Is Associated with SIV Envelope Trimer Stabilization. PLoS ONE, 2013, 8, e69406.	2.5	19
30	Subunit organization of the membrane-bound HIV-1 envelope glycoprotein trimer. Nature Structural and Molecular Biology, 2012, 19, 893-899.	8.2	151
31	Understanding Thermodynamic Competitivity between Biopolymer Folding and Misfolding under Large-Scale Intermolecular Interactions. Journal of the American Chemical Society, 2012, 134, 631-639.	13.7	5
32	Graphene Structures at an Extreme Degree of Buckling. ACS Nano, 2011, 5, 1395-1400.	14.6	43
33	Characterization of a core fragment of the rhesus monkey TRIM5α protein. BMC Biochemistry, 2011, 12, 1.	4.4	20
34	In vivo nanomechanical imaging of blood-vessel tissues directly in living mammals using atomic force microscopy. Applied Physics Letters, 2009, 95, 013704.	3.3	38
35	Reversibly switchable DNA nanocompartment on surfaces: experiments, applications, and theory. Frontiers of Physics in China, 2008, 3, 74-87.	1.0	0
36	Gating of Single Synthetic Nanopores by Proton-Driven DNA Molecular Motors. Journal of the American Chemical Society, 2008, 130, 8345-8350.	13.7	295

Youdong Mao

#	Article	IF	CITATIONS
37	Alternating-electric-field-enhanced reversible switching of DNA nanocontainers with pH. Nucleic Acids Research, 2007, 35, e33.	14.5	73
38	Tunable non-equilibrium gating of flexible DNA nanochannels in response to transport flux. Nature Nanotechnology, 2007, 2, 366-371.	31.5	24
39	Monte Carlo simulation of melting transition on DNA nanocompartment. Journal of Physics: Conference Series, 2006, 29, 18-26.	0.4	3
40	Reversibly switchable DNA nanocompartment on surfaces. Nucleic Acids Research, 2004, 32, e144-e144.	14.5	16
41	Studies of temperature-dependent electronic transduction on DNA hairpin loop sensor. Nucleic Acids Research, 2003, 31, 108e-108.	14.5	76
42	The Realization of a Fast and Effective Optimization Method on Atomic Structure. Journal of the Physical Society of Japan, 2002, 71, 762-766.	1.6	0
43	Using an evolutionary algorithm based on cell division operation to calculate ground-state energies of double-electron systems in magnetic fields. Chinese Physics B, 2001, 10, 1118-1123.	1.3	0
44	USING EVOLUTIONARY ALGORITHM TO CALCULATE THE GROUND-STATE ENERGY OF DOUBLE-ELECTRON ATOMS IN A UNIFORM MAGNETIC FIELD (B ≤109G). International Journal of Modern Physics C, 2000, 11, 183-194.	1.7	6