
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/206088/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The APEX Large CO Heterodyne Orion Legacy Survey (ALCOHOLS). Astronomy and Astrophysics, 2022, 658, A178.	5.1	6
2	The ALMA Survey of 70 μm Dark High-mass Clumps in Early Stages (ASHES). V. Deuterated Molecules in the 70 μm Dark IRDC G14.492-00.139. Astrophysical Journal, 2022, 925, 144.	4.5	12
3	B-fields in Star-forming Region Observations (BISTRO): Magnetic Fields in the Filamentary Structures of Serpens Main. Astrophysical Journal, 2022, 926, 163.	4.5	16
4	Cluster Formation in GGD 12-15: Infall Motion with Rotation of the Natal Clump. Astrophysical Journal, 2022, 928, 76.	4.5	1
5	ALMA-IMF. Astronomy and Astrophysics, 2022, 662, A8.	5.1	21
6	ALMA-IMF. Astronomy and Astrophysics, 2022, 662, A9.	5.1	11
7	Vibrationally Excited Lines of HC ₃ N Associated with the Molecular Disk around the G24.78+0.08 A1 Hypercompact H ii Region. Astrophysical Journal, 2022, 931, 99.	4.5	3
8	Cloud structures in MÂ17 SWex : Possible cloud–cloud collision. Publication of the Astronomical Society of Japan, 2021, 73, S300-S320.	2.5	5
9	Star cluster formation in Orion A. Publication of the Astronomical Society of Japan, 2021, 73, S239-S255.	2.5	11
10	Observations of Magnetic Fields Surrounding LkHÎ \pm 101 Taken by the BISTRO Survey with JCMT-POL-2. Astrophysical Journal, 2021, 908, 10.	4.5	16
11	Carbon Chain Chemistry in Hot-core Regions around Three Massive Young Stellar Objects Associated with 6.7 GHz Methanol Masers. Astrophysical Journal, 2021, 908, 100.	4.5	5
12	The CARMA-NRO Orion Survey—Data Release. Research Notes of the AAS, 2021, 5, 55.	0.7	2
13	Digging into the Interior of Hot Cores with ALMA (DIHCA). I. Dissecting the High-mass Star-forming Core G335.579-0.292 MM1. Astrophysical Journal, 2021, 909, 199.	4.5	17
14	The Core Mass Function in the Orion Nebula Cluster Region: What Determines the Final Stellar Masses?. Astrophysical Journal Letters, 2021, 910, L6.	8.3	15
15	Dust polarized emission observations of NGC 6334. Astronomy and Astrophysics, 2021, 647, A78.	5.1	41
16	Misaligned Twin Molecular Outflows from the Class 0 Protostellar Binary System VLA 1623A Unveiled by ALMA. Astrophysical Journal, 2021, 912, 34.	4.5	15
17	The C18O core mass function toward Orion A: Single-dish observations. Publication of the Astronomical Society of Japan, 2021, 73, 487-503.	2.5	3
18	High-resolution CARMA Observation of Molecular Gas in the North America and Pelican Nebulae. Astronomical Journal, 2021, 161, 229.	4.7	2

#	Article	IF	CITATIONS
19	Magnetic Fields in Massive Star-forming Regions (MagMaR). I. Linear Polarized Imaging of the Ultracompact H ii Region G5.89–0.39. Astrophysical Journal, 2021, 913, 29.	4.5	13
20	The JCMT BISTRO Survey: Revealing the Diverse Magnetic Field Morphologies in Taurus Dense Cores with Sensitive Submillimeter Polarimetry. Astrophysical Journal Letters, 2021, 912, L27.	8.3	21
21	The JCMT BISTRO Survey: The Distribution of Magnetic Field Strengths toward the OMC-1 Region. Astrophysical Journal, 2021, 913, 85.	4.5	19
22	The ALMA Survey of 70 μm Dark High-mass Clumps in Early Stages (ASHES). III. A Young Molecular Outflow Driven by a Decelerating Jet. Astrophysical Journal, 2021, 913, 131.	4.5	15
23	Gravity-driven Magnetic Field at â^¼1000 au Scales in High-mass Star Formation. Astrophysical Journal Letters, 2021, 915, L10.	8.3	41
24	ALMA View of the ϕOphiuchi A PDR with a 360 au Beam: The [C i] Emission Originates from the Plane-parallel PDR and Extended Gas. Astrophysical Journal Letters, 2021, 914, L9.	8.3	2
25	The JCMT BISTRO Survey: An 850/450 μm Polarization Study of NGC 2071IR in Orion B. Astrophysical Journal, 2021, 918, 85.	4.5	13
26	The CARMA-NRO Orion Survey: Filament Formation via Collision-induced Magnetic Reconnection—the Stick in Orion A. Astrophysical Journal, 2021, 906, 80.	4.5	6
27	Star Formation Triggered by Shocks. Astrophysical Journal, 2021, 921, 150.	4.5	5
28	Chemical Compositions in the Vicinity of Protostars in Ophiuchus. Astrophysical Journal, 2021, 922, 152.	4.5	4
29	The ALMA Survey of 70 μm Dark High-mass Clumps in Early Stages (ASHES). IV. Star Formation Signatures in G023.477. Astrophysical Journal, 2021, 923, 147.	4.5	23
30	Magnetic Fields in Massive Star-forming Regions (MagMaR). II. Tomography through Dust and Molecular Line Polarization in NGC 6334I(N). Astrophysical Journal, 2021, 923, 204.	4.5	10
31	The CARMA–NRO Orion Survey: Protostellar Outflows, Energetics, and Filamentary Alignment. Astrophysical Journal, 2020, 896, 11.	4.5	24
32	Magnetized filamentary gas flows feeding the young embedded cluster in Serpens South. Nature Astronomy, 2020, 4, 1195-1201.	10.1	53
33	Investigation of chemical differentiation among the NGC 2264 cluster-forming clumps. Monthly Notices of the Royal Astronomical Society, 2020, 493, 2395-2409.	4.4	7
34	The Molecular Cloud Lifecycle. Space Science Reviews, 2020, 216, 50.	8.1	77
35	From Diffuse Gas to Dense Molecular Cloud Cores. Space Science Reviews, 2020, 216, 1.	8.1	38
36	Large-scale Molecular Gas Distribution in the M17 Cloud Complex: Dense Gas Conditions of Massive Star Formation?. Astrophysical Journal, 2020, 891, 66.	4.5	14

#	Article	IF	CITATIONS
37	GMC Collisions as Triggers of Star Formation. VII. The Effect of Magnetic Field Strength on Star Formation. Astrophysical Journal, 2020, 891, 168.	4.5	14
38	The JCMT BISTRO Survey: Magnetic Fields Associated with a Network of Filaments in NGC 1333. Astrophysical Journal, 2020, 899, 28.	4.5	39
39	The ALMA Survey of 70 μm Dark High-mass Clumps in Early Stages (ASHES). II. Molecular Outflows in the Extreme Early Stages of Protocluster Formation. Astrophysical Journal, 2020, 903, 119.	4.5	37
40	A Detailed Analysis of the Cloud Structure and Dynamics in Aquila Rift. Astrophysical Journal, 2020, 895, 137.	4.5	2
41	JCMT BISTRO Survey: Magnetic Fields within the Hub-filament Structure in IC 5146. Astrophysical Journal, 2019, 876, 42.	4.5	42
42	Magnetic field structure in Serpens South. Publication of the Astronomical Society of Japan, 2019, 71, .	2.5	18
43	First clear detection of the CCS Zeeman splitting toward the pre-stellar core, Taurus Molecular CloudÂ1. Publication of the Astronomical Society of Japan, 2019, 71, .	2.5	8
44	The JCMT BISTRO Survey: The Magnetic Field in the Starless Core <i>Ï</i> Ophiuchus C. Astrophysical Journal, 2019, 877, 43.	4.5	38
45	Nobeyama 45 m mapping observations toward the nearby molecular clouds Orion A, Aquila Rift, and M17: Project overview. Publication of the Astronomical Society of Japan, 2019, 71, .	2.5	26
46	Near-infrared imaging polarimetry toward M 17 SWex. Publication of the Astronomical Society of Japan, 2019, 71, .	2.5	13
47	Cloud–cloud collision in the DR 21 cloud as a trigger of massive star formation. Publication of the Astronomical Society of Japan, 2019, 71, .	2.5	26
48	Interaction between the Northern Coalsack in the Cygnus OBÂ7 cloud complex and multiple supernova remnants including HBÂ21. Publication of the Astronomical Society of Japan, 2019, 71, .	2.5	17
49	A survey of molecular cores in Mâ \in ‰17 SWex. Publication of the Astronomical Society of Japan, 2019, 71, .	2.5	4
50	Nobeyama 45 m mapping observations toward Orion A. II. Classification of cloud structures and variation of the 13CO/C18O abundance ratio due to far-UV radiation. Publication of the Astronomical Society of Japan, 2019, 71, .	2.5	23
51	Relative Alignment between the Magnetic Field and Molecular Gas Structure in the Vela C Giant Molecular Cloud Using Low- and High-density Tracers. Astrophysical Journal, 2019, 878, 110.	4.5	49
52	The JCMT BISTRO Survey: The Magnetic Field of the Barnard 1 Star-forming Region. Astrophysical Journal, 2019, 877, 88.	4.5	37
53	Submillimeter Polarization Spectrum of the Carina Nebula. Astrophysical Journal, 2019, 872, 197.	4.5	12
54	ALMA Observations of the ϕOphiuchus B2 Region. I. Molecular Outflows and Their Driving Sources. Astrophysical Journal, 2019, 871, 86.	4.5	6

#	Article	IF	CITATIONS
55	Filamentary Accretion Flows in the Infrared Dark Cloud G14.225–0.506 Revealed by ALMA. Astrophysical Journal, 2019, 875, 24.	4.5	56
56	ALMA Observations of Layered Structures due to CO Selective Dissociation in the ϕOphiuchi A Plane-parallel PDR. Astrophysical Journal, 2019, 875, 62.	4.5	3
57	Magnetic Stability of Massive Star-forming Clumps in RCW 106. Astrophysical Journal Letters, 2019, 875, L16.	8.3	4
58	Cluster formation in the W 40 and Serpens South complex triggered by the expanding H <scp>ii</scp> region. Publication of the Astronomical Society of Japan, 2019, 71, .	2.5	27
59	Nobeyama 45 m mapping observations toward Orion A. I. Molecular outflows. Publication of the Astronomical Society of Japan, 2019, 71, .	2.5	11
60	Nobeyama 45 m mapping observations toward Orion A. III. Multi-line observations toward an outflow-shocked region, Orion Molecular Cloud 2 FIR 4. Publication of the Astronomical Society of Japan, 2019, 71, .	2.5	9
61	The ALMA Survey of 70 μm Dark High-mass Clumps in Early Stages (ASHES). I. Pilot Survey: Clump Fragmentation. Astrophysical Journal, 2019, 886, 102.	4.5	104
62	Discovery of CCS Velocity-coherent Substructures in the Taurus Molecular Cloud 1. Astrophysical Journal, 2019, 879, 88.	4.5	24
63	A Statistical Study of Massive Cluster-forming Clumps. Astrophysical Journal, 2018, 855, 45.	4.5	18
64	Spectral Tomography for the Line-of-sight Structures of the Taurus Molecular Cloud 1. Astrophysical Journal, 2018, 864, 82.	4.5	22
65	Giant molecular cloud collisions as triggers of star formation. VI. Collision-induced turbulence. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	17
66	Extremely Dense Cores Associated with Chandra Sources in Ophiuchus A: Forming Brown Dwarfs Unveiled?. Astrophysical Journal, 2018, 866, 141.	4.5	14
67	Chemical Diversity in Three Massive Young Stellar Objects Associated with 6.7 GHz CH ₃ OH Masers. Astrophysical Journal, 2018, 866, 150.	4.5	18
68	Interferometric Observations of Cyanopolyynes toward the G28.28–0.36 High-mass Star-forming Region. Astrophysical Journal, 2018, 866, 32.	4.5	14
69	A First Look at BISTRO Observations of the ϕOph-A core. Astrophysical Journal, 2018, 859, 4.	4.5	46
70	Infall Signatures in a Prestellar Core Embedded in the High-mass 70 μm Dark IRDC G331.372-00.116. Astrophysical Journal, 2018, 861, 14.	4.5	55
71	The CARMA-NRO Orion Survey. Astrophysical Journal, Supplement Series, 2018, 236, 25.	7.7	64
72	Expanding CO Shells in the Orion A Molecular Cloud. Astrophysical Journal, 2018, 862, 121.	4.5	18

5

#	Article	IF	CITATIONS
73	Magnetic Fields toward Ophiuchus-B Derived from SCUBA-2 Polarization Measurements. Astrophysical Journal, 2018, 861, 65.	4.5	51
74	First Observation of the Submillimeter Polarization Spectrum in a Translucent Molecular Cloud. Astrophysical Journal, 2018, 857, 10.	4.5	29
75	GMC Collisions as Triggers of Star Formation. II. 3D Turbulent, Magnetized Simulations. Astrophysical Journal, 2017, 835, 137.	4.5	57
76	Wide-field ¹² CO() and ¹³ CO() Observations toward the Aquila Rift and Serpens Molecular Cloud Complexes. I. Molecular Clouds and Their Physical Properties. Astrophysical Journal, 2017, 837, 154.	4.5	16
77	GMC Collisions as Triggers of Star Formation. III. Density and Magnetically Regulated Star Formation. Astrophysical Journal, 2017, 841, 88.	4.5	53
78	First Results from BISTRO: A SCUBA-2 Polarimeter Survey of the Gould Belt. Astrophysical Journal, 2017, 842, 66.	4.5	79
79	Comparing Submillimeter Polarized Emission with Near-infrared Polarization of Background Stars for the Vela C Molecular Cloud. Astrophysical Journal, 2017, 837, 161.	4.5	16
80	Observations of Cyanopolyynes toward Four High-mass Star-forming Regions Containing Hot Cores. Astrophysical Journal, 2017, 844, 68.	4.5	12
81	GMC Collisions as Triggers of Star Formation. V. Observational Signatures. Astrophysical Journal, 2017, 850, 23.	4.5	43
82	BALLOON-BORNE SUBMILLIMETER POLARIMETRY OF THE VELA C MOLECULAR CLOUD: SYSTEMATIC DEPENDENCE OF POLARIZATION FRACTION ON COLUMN DENSITY AND LOCAL POLARIZATION-ANGLE DISPERSION. Astrophysical Journal, 2016, 824, 134.	4.5	99
83	DENSE CORE PROPERTIES IN THE INFRARED DARK CLOUD G14.225-0.506 REVEALED BY ALMA. Astrophysical Journal, 2016, 833, 209.	4.5	58
84	THE INTRINSIC ABUNDANCE RATIO AND X-FACTOR OF CO ISOTOPOLOGUES IN L 1551 SHIELDED FROM FUV PHOTODISSOCIATION. Astrophysical Journal, 2016, 826, 193.	4.5	18
85	DISCOVERY OF INFALLING MOTION WITH ROTATION OF THE CLUSTER-FORMING CLUMP S235AB AND ITS IMPLICATION TO THE CLUMP STRUCTURES. Astrophysical Journal, 2016, 832, 205.	4.5	10
86	THE DEUTERIUM FRACTION IN MASSIVE STARLESS CORES AND DYNAMICAL IMPLICATIONS. Astrophysical Journal, 2016, 821, 94.	4.5	37
87	SUBMILLIMETER POLARIZATION SPECTRUM IN THE VELA C MOLECULAR CLOUD. Astrophysical Journal, 2016, 824, 84.	4.5	27
88	Protostellar disc formation enabled by removal of small dust grains. Monthly Notices of the Royal Astronomical Society, 2016, 460, 2050-2076.	4.4	97
89	IMPLICATION OF FORMATION MECHANISMS OF HC ₅ N IN TMC-1 AS STUDIED BY ¹³ C ISOTOPIC FRACTIONATION. Astrophysical Journal, 2016, 817, 147.	4.5	31
90	Development of the new multi-beam 100 GHz band SIS receiver FOREST for the Nobeyama 45-m Telescope. Proceedings of SPIE, 2016, , .	0.8	74

#	Article	IF	CITATIONS
91	MAGNETIC FIELD OF THE VELA C MOLECULAR CLOUD. Astrophysical Journal Letters, 2016, 830, L23.	8.3	14
92	Z45: A new 45-GHz band dual-polarization HEMT receiver for the NRO 45-m radio telescope. Publication of the Astronomical Society of Japan, 2015, 67, .	2.5	15
93	SPECTRAL-LINE SURVEY AT MILLIMETER AND SUBMILLIMETER WAVELENGTHS TOWARD AN OUTFLOW-SHOCKED REGION, OMC 2-FIR 4. Astrophysical Journal, Supplement Series, 2015, 221, 31.	7.7	22
94	DENSE CLUMPS AND CANDIDATES FOR MOLECULAR OUTFLOWS IN W40. Astrophysical Journal, 2015, 806, 201.	4.5	13
95	CATALOG OF DENSE CORES IN THE ORION A GIANT MOLECULAR CLOUD. Astrophysical Journal, Supplement Series, 2015, 217, 7.	7.7	33
96	CONFRONTING THE OUTFLOW-REGULATED CLUSTER FORMATION MODEL WITH OBSERVATIONS. Astrophysical Journal, 2014, 783, 115.	4.5	40
97	CLUSTER FORMATION TRIGGERED BY FILAMENT COLLISIONS IN SERPENS SOUTH. Astrophysical Journal Letters, 2014, 791, L23.	8.3	61
98	High abundance ratio of ¹³ CO to C ¹⁸ O toward photon-dominated regions in the Orion-A giant molecular cloud. Astronomy and Astrophysics, 2014, 564, A68.	5.1	66
99	Software Polarization Spectrometer "PolariS". Journal of Astronomical Instrumentation, 2014, 03, .	1.5	10
100	MOLECULAR CLUMPS AND INFRARED CLUSTERS IN THE S247, S252, AND BFS52 REGIONS. Astrophysical Journal, 2013, 768, 72.	4.5	31
101	THE DYNAMICAL STATE OF THE SERPENS SOUTH FILAMENTARY INFRARED DARK CLOUD. Astrophysical Journal, 2013, 778, 34.	4.5	33
102	THE ROTATING OUTFLOW, ENVELOPE, AND DISK OF THE CLASS-0/I PROTOSTAR [BHB2007]#11 IN THE PIPE NEBULA. Astrophysical Journal, 2013, 771, 128.	4.5	30
103	EVIDENCE FOR CLOUD-CLOUD COLLISION AND PARSEC-SCALE STELLAR FEEDBACK WITHIN THE L1641-N REGION. Astrophysical Journal, 2012, 746, 25.	4.5	62
104	SUBSTELLAR-MASS CONDENSATIONS IN PRESTELLAR CORES. Astrophysical Journal Letters, 2012, 758, L25.	8.3	21
105	CLUSTERED STAR FORMATION IN MAGNETIC CLOUDS: PROPERTIES OF DENSE CORES FORMED IN OUTFLOW-DRIVEN TURBULENCE. Astrophysical Journal, 2011, 740, 36.	4.5	37
106	NEAR-INFRARED-IMAGING POLARIMETRY TOWARD SERPENS SOUTH: REVEALING THE IMPORTANCE OF THE MAGNETIC FIELD. Astrophysical Journal, 2011, 734, 63.	4.5	104
107	THE MOLECULAR OUTFLOWS IN THE ϕOPHIUCHI MAIN CLOUD: IMPLICATIONS FOR TURBULENCE GENERATION. Astrophysical Journal, 2011, 726, 46.	4.5	44
108	MOLECULAR OUTFLOWS FROM THE PROTOCLUSTER SERPENS SOUTH. Astrophysical Journal, 2011, 737, 56.	4.5	49

#	Article	IF	CITATIONS
109	OUTFLOW FEEDBACK REGULATED MASSIVE STAR FORMATION IN PARSEC-SCALE CLUSTER-FORMING CLUMPS. Astrophysical Journal, 2010, 709, 27-41.	4.5	307
110	NEAR-INFRARED IMAGING POLARIMETRY OF THE SERPENS CLOUD CORE: MAGNETIC FIELD STRUCTURE, OUTFLOWS, AND INFLOWS IN A CLUSTER FORMING CLUMP. Astrophysical Journal, 2010, 716, 299-314.	4.5	35
111	LOWERING THE CHARACTERISTIC MASS OF CLUSTER STARS BY MAGNETIC FIELDS AND OUTFLOW FEEDBACK. Astrophysical Journal Letters, 2010, 720, L26-L30.	8.3	43
112	PHYSICAL PROPERTIES OF DENSE CORES IN THE I•OPHIUCHI MAIN CLOUD AND A SIGNIFICANT ROLE OF EXTERNAL PRESSURES IN CLUSTERED STAR FORMATION. Astrophysical Journal, 2010, 714, 680-698.	4.5	43
113	Magnetically Regulated Star Formation in Three Dimensions: The Case of the Taurus Molecular Cloud Complex. Astrophysical Journal, 2008, 687, 354-375.	4.5	160
114	Protostellar Turbulence Driven by Collimated Outflows. Astrophysical Journal, 2007, 662, 395-412.	4.5	218
115	On the Hydrodynamic Interaction of Shock Waves with Interstellar Clouds. II. The Effect of Smooth Cloud Boundaries on Cloud Destruction and Cloud Turbulence. Astrophysical Journal, Supplement Series, 2006, 164, 477-505.	7.7	124
116	Cluster Formation in Protostellar Outflow-driven Turbulence. Astrophysical Journal, 2006, 640, L187-L190.	4.5	169
117	Magnetically Regulated Star Formation in Turbulent Clouds. Astrophysical Journal, 2004, 609, L83-L86.	4.5	74
118	Gravitational Collapse of Spherical Interstellar Clouds. Publication of the Astronomical Society of Japan, 1999, 51, 637-651.	2.5	50
119	What Determines the Typical Mass of Dense Coresin Quiescent, Nonmagnetized Molecular Clouds?. Astrophysical Journal, 1998, 507, L165-L169.	4.5	5
120	Fragmentation of filamentary molecular clouds with longitudinal magnetic fields: Formation of disks and their collapse. Astrophysical Journal, 1995, 444, 770.	4.5	65