List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2060858/publications.pdf Version: 2024-02-01

M R REDEZIN

#	Article	IF	CITATIONS
1	Synthesis, structure and fluorescence of a zinc(ii) chelate complex with bis(2,4,7,8,9-pentamethyldipyrrolylmethen-3-yl)methane. Mendeleev Communications, 2011, 21, 168-170.	0.6	37
2	The computational and experimental investigations of photophysical and spectroscopic properties of BF2 dipyrromethene complexes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 117, 323-329.	2.0	33
3	Thermal oxidative degradation of the functionally substituted 2,2′-dipyrrolylmethenes hydrobromides and difluoroborates. Russian Journal of General Chemistry, 2013, 83, 545-551.	0.3	28
4	Novel quenchometric oxygen sensing material based on diiodine-substituted boron dipyrromethene dye. Sensors and Actuators B: Chemical, 2014, 197, 206-210.	4.0	27
5	Characteristic features of formation, synthesis, and properties of binuclear zinc(II) helicates with alkyl-substituted 3,3′-bis(dipyrrolylmethenes). Russian Journal of Inorganic Chemistry, 2012, 57, 261-269.	0.3	21
6	Synthesis, spectral-luminescent properties of B(III) and Zn(II) complexes with alkyl- and aryl-substituted dipyrrins and azadipyrrins. Russian Journal of Inorganic Chemistry, 2014, 59, 1187-1194.	0.3	21
7	Influence of structural and solvation factors on the spectral-fluorescent properties of alkyl-substituted BODIPYs in solutions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 173, 228-234.	2.0	20
8	Photonics of coordination complexes of dipyrrins with p- and d-block elements for application in optical devices. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 354, 147-154.	2.0	20
9	Photonics of boron(III) and zinc(II) dipyrromethenates as active media for modern optical devices. Journal of Molecular Liquids, 2019, 278, 5-11.	2.3	20
10	Thermodynamics of Solution of Hemato- and Deuteroporphyrins in <i>N</i> , <i>N</i> -Dimethylformamide. Journal of Chemical & Engineering Data, 2013, 58, 2502-2505.	1.0	19
11	Luminescent properties of new 2,2-, 2,3- and 3,3-CH2-bis(BODIPY)s dyes: Structural and solvation effects. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 218, 308-319.	2.0	19
12	Title is missing!. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2003, 29, 690-694.	0.3	18
13	Thermochemistry of solution of some quaternized derivatives of tetra(4-pyridyl)porphine in water. Russian Journal of General Chemistry, 2007, 77, 1955-1958.	0.3	18
14	Comparative analysis of physicochemical properties of dinuclear zinc(II) helicates with 2,2′-, 2,3′-, and 3,3′-bis(dipyrromethenes). Russian Journal of Inorganic Chemistry, 2014, 59, 578-586.	0.3	18
15	Photonics of zinc(II) and boron(III) chelates with methyl- and phenyl-substituted dipyrromethenes and azadipyrromethenes. High Energy Chemistry, 2015, 49, 16-23.	0.2	18
16	Synthesis, spectral luminescent properties, and photostability of monoiodo- and dibromo-substituted BF2-dipyrrinates. Russian Journal of General Chemistry, 2016, 86, 840-847.	0.3	18
17	Effect of Aryl-, Halogen-, and Ms-Aza-Substitution on the Luminescent Properties and Photostability of Difluoroborates of 2,2′-Dipyrrometenes. Journal of Fluorescence, 2019, 29, 911-920.	1.3	18
18	Kinetics of Metal Exchange Between Cadmium Mesoporphyrin and Zinc and Cobalt Salts in Organic Solvents. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2004, 30, 291-295.	0.3	16

#	Article	IF	CITATIONS
19	Synthesis and spectral properties of zinc(II) helicates with 3,3′-bis(dipyrrolylmethenes) series. Russian Journal of General Chemistry, 2010, 80, 1216-1218.	0.3	16

Spectral, luminescent, photochemical, and laser properties of a series of boron fluoride complexes of
dipyrrolylmethenes in solutions. Optics and Spectroscopy (English Translation of Optika I) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 697 Td

21	Photophysics of diiodine-substituted fluorinated boron–dipyrromethene: A time resolved study. Chemical Physics Letters, 2013, 585, 49-52.	1.2	16
22	Novel non-covalent supramolecular systems based on zinc(II) bis(dipyrromethenate)s with fullerenes. Journal of Molecular Liquids, 2018, 269, 327-334.	2.3	16
23	Synthesis, Spectral-Luminescent Properties, and Photostability of Zn(II) Complexes With Dipyrrins Modified by the Periphery and meso-Spacer. Chemistry of Heterocyclic Compounds, 2014, 49, 1740-1747.	0.6	15
24	Prospects of applications of fluorescent sensors based on zinc(II) and boron(III) bis(dipyrromethenate)s. Journal of Molecular Liquids, 2019, 274, 681-689.	2.3	15
25	Lasing characteristics of difluoroborates of 2,2'-dipyrromethene derivatives in solid matrices. Quantum Electronics, 2014, 44, 206-212.	0.3	14
26	Optical characteristics of new luminophores based on boron-fluoride complexes of substituted dipyrromethenes. Russian Physics Journal, 2013, 56, 264-268.	0.2	13
27	meso-spacer influence on properties of zinc(II) complexes with 2,3′- and 3,3′-bis(dipyrrolylmethenes). Russian Journal of General Chemistry, 2013, 83, 1143-1150.	0.3	13
28	Electrochemical behavior of a number of bispyridyl-substituted porphyrins and their electrocatalytic activity in molecular oxygen reduction reaction. Journal of Porphyrins and Phthalocyanines, 2016, 20, 615-623.	0.4	13
29	Synthesis and luminescent properties of zinc(II) complexes with iodo- and bromosubstituted 2,2′-dipyrrines. Journal of Luminescence, 2016, 170, 248-254.	1.5	13
30	Thermodynamics of Copper(II), Zinc(II), Cobalt(II), Mercury(II), and Nickel(II) Complexation with Â,α-Dipyrrolylmethene in DMF. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2004, 30, 30-33.	0.3	12
31	Influence of metal cation on chromophore properties of complexes of some d metals with α,α-dipyrrolylmethene. Russian Journal of General Chemistry, 2004, 74, 1282-1285.	0.3	12
32	Standard enthalpies and heat capacities of ethyl acetate and deuteroporphyrin dimethylester solution in N,N-dimethylformamide at 298–318K. Thermochimica Acta, 2011, 521, 224-226.	1.2	12
33	Spectroscopic and laser characteristics of new efficient luminophores for a wide spectral range based on complexes of dipyrrolylmethene derivatives with difluorine borate. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2013, 115, 708-716.	0.2	11
34	Blood porphyrins in binary mixtures of N,N-dimethylformamide with 1-octanol and chloroform: The energetics of solvation, (solute+cosolvent) interactions and model calculations. Journal of Chemical Thermodynamics, 2015, 83, 104-109.	1.0	11
35	A New Sensitive and Selective Off-On Fluorescent Zn2+ Chemosensor Based on 3,3′,5,5′-Tetraphenylsubstituted Dipyrromethene. Journal of Fluorescence, 2016, 26, 1967-1974. 	1.3	11
36	On the mechanism of the metal exchange in natural cadmium porphyrins. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2007, 33, 488-492.	0.3	10

#	Article	IF	CITATIONS
37	Structure and energetics of Î ² -diketonates. XVI. Molecular structure and vibrational spectrum of zinc acetylacetonate according to gas-phase electron diffraction and quantum-chemical calculations. Journal of Structural Chemistry, 2009, 50, 1035-1045.	0.3	10
38	Synthesis and photophysical properties of Cd(II) and Cu(II) complexes with decamethylated bis(dipyrrolylmethene). Russian Journal of General Chemistry, 2011, 81, 2349-2351.	0.3	10
39	Thermodynamics of solution of proto- and mezoporphyrins in N,N-dimethylformamide. Journal of Chemical Thermodynamics, 2015, 89, 123-126.	1.0	10
40	Effect of solvent nature on spectral properties of blue-emitting meso-propargylamino-BODIPY. Journal of Molecular Liquids, 2019, 285, 194-203.	2.3	10
41	Title is missing!. Russian Journal of General Chemistry, 2002, 72, 126-130.	0.3	9
42	Synthesis and use of ecologically pure metal-containing dyes based on chlorophyll derivatives. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2006, 32, 226-230.	0.3	9
43	Natural dyes based on chlorophyll and protoporphyrin derivatives. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2010, 36, 711-714.	0.3	9
44	Oxidative degradation of porphyrins and metalloporphyrins under polythermal conditions. Russian Journal of General Chemistry, 2011, 81, 1222-1230.	0.3	9
45	Determination of the quantum yield of singlet oxygen sensitized by halogenated boron difluoride dipyrromethenes. High Energy Chemistry, 2017, 51, 175-181.	0.2	9
46	Kinetics of the metal-exchange reaction of deuteroporphyrin and gematoporphyrin cadmium complexes with cobalt chloride in acetonitrile. Russian Journal of Inorganic Chemistry, 2007, 52, 1269-1273.	0.3	8
47	The influence of the macroring structure on the enthalpies of solution of tetrapyridylporphyrin derivatives in water. Russian Journal of Physical Chemistry A, 2010, 84, 1449-1451.	0.1	8
48	Synthesis and spectral properties of the nickel(II) and mercury(II) helicates with 3,3′-bis(dipyrrolylmethenes). Russian Journal of General Chemistry, 2011, 81, 591-593.	0.3	8
49	Synthesis and properties of (1,2,3,7,9-pentamethyldipyrrolylmethen-8-yl)-(1,2,3,7,8-pentamethyldipyrrolylmethen-9-yl)methane and bis(1,2,3,7,9-pentamethyldipyrrolylmethen-8-yl)trifluoromethylmethane dihydrobromides. Russian lournal of General Chemistry, 2012, 82, 1287-1292	0.3	8
50	Double metal-ligand exchange in solvate complex-metal porphyrin systems. Russian Journal of General Chemistry, 2013, 83, 1410-1418.	0.3	8
51	Stabilities of a series of dipyrrin difluoroborates in protic solvents in the ground and electron-excited states. Russian Journal of Physical Chemistry A, 2016, 90, 349-355.	0.1	8
52	Spectral-kinetic properties and efficiency of singlet oxygen generation by some dipyrromethenes. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 344, 206-211.	2.0	8
53	Effect of Alkyl, Aryl, and meso-Aza Substitution on the Thermal Stability of BODIPY. Russian Journal of Inorganic Chemistry, 2018, 63, 1326-1332.	0.3	8
54	Effects of halogen substitution on the photostability and thermal degradation of boron(III), zinc(II) and cadmium(II) dipyrrinato complexes. Inorganica Chimica Acta, 2018, 482, 800-806.	1.2	8

#	Article	IF	CITATIONS
55	Synthesis and Some Physical-Chemical Properties of meso-Aryl- and Alkyl Substituted Corroles and their Metal Complexes. Macroheterocycles, 2019, 12, 119-128.	0.9	8
56	Kinetics of Alkylated Biladiene-a,c Deprotonation. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2004, 30, 371-374.	0.3	7
57	Thermodynamics of complex formation reactions between d metals and linear oligopyrroles. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2006, 32, 830-836.	0.3	7
58	Biological applications of fluorescence lifetime imaging beyond microscopy. Proceedings of SPIE, 2010, , .	0.8	7
59	Synthesis and spectral properties of helicate of cobalt(II) with Bis(1,2,3,7,9-pentamethyldipyrrolylmethen-3-yl)methane. Russian Journal of General Chemistry, 2011, 81, 162-164.	0.3	7
60	Thermochemistry of ethyl acetate solvation in the 1-octanol-N,N-dimethylformamide system. Russian Journal of Physical Chemistry A, 2011, 85, 1903-1907.	0.1	7
61	Difluoroborates of phenyl-substituted aza-dipyrromethenes: Preparation, spectral properties, and stability in solution. Russian Journal of General Chemistry, 2015, 85, 2739-2742.	0.3	7
62	Title is missing!. Russian Chemical Bulletin, 2003, 52, 1807-1813.	0.4	6
63	Chlorophyll and Its Derivatives, Chlorins and Porphyrins, as a Promising Class of Environmentally Friendly Dyes. Russian Journal of Applied Chemistry, 2003, 76, 1958-1961.	0.1	6
64	Cadmium(II) for zinc(II) exchange reactions in deutero- and hematoporphyrin complexes in dimethyl sulfoxide. Russian Journal of Inorganic Chemistry, 2007, 52, 1430-1434.	0.3	6
65	Metal exchange between cadmium complexes with natural porphyrins and cobalt chloride in ethanol. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2010, 36, 913-917.	0.3	6
66	Enthalpies and heat capacities of hematoporphyrin solutions in N,N-dimethylformamide and octanol-1. Russian Journal of Physical Chemistry A, 2012, 86, 895-897.	0.1	6
67	Synthesis and Photochemical Properties of 2,3;5,6-bis(cyclohexano)-BODIPY. Journal of Fluorescence, 2018, 28, 393-407.	1.3	6
68	Spectral and Solvation Properties of Some Dipyrromethene Hydrobromides and Their Oxa- and Thia- Analoges. Molecules, 2000, 5, 809-815.	1.7	5
69	Metal exchange reactions between cadmium protoporphyrin and cobalt and zinc chlorides in acetonitrile and dimethyl sulfoxide. Russian Journal of Inorganic Chemistry, 2006, 51, 112-117.	0.3	5
70	Enthalpies and heat capacities of dissolution for calcium chloride and sodium oxalate. Russian Journal of Inorganic Chemistry, 2007, 52, 129-130.	0.3	5
71	The influence of the macroring structure on the solvation of nonplanar porphyrins in organic solvents. Russian Journal of Physical Chemistry A, 2009, 83, 1315-1320.	0.1	5
72	Photophysics of boron difluoride chelates with dihalogenated tetraphenyl-ms-azadipyrromethenes. High Energy Chemistry, 2016, 50, 266-273.	0.2	5

#	Article	IF	CITATIONS
73	Solvation interactions and photostability of tetrakis(1-methylpyridyl)porphyrin derivatives. Journal of Molecular Liquids, 2019, 290, 111196.	2.3	5
74	Thermochemistry of Solution of Fe(III) and Mn(III) Complexes with Natural Porphyrins. Russian Journal of General Chemistry, 2001, 71, 294-298.	0.3	4
75	Enthalpies of Protonation of Deutero- and Hematoporphyrin in Solutions. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2002, 28, 371-374.	0.3	4
76	Title is missing!. Russian Journal of General Chemistry, 2002, 72, 1306-1310.	0.3	4
77	Correlation of the basicity of dipyrrolylmethenes biladienes-a,c with the thermal and kinetic stability of their salts. Russian Journal of General Chemistry, 2006, 76, 141-147.	0.3	4
78	Preparation and spectral properties of Zn(II) complexes with aryl-substituted dipyrrolylmethene and azadipyrrolylmethene. Russian Journal of General Chemistry, 2013, 83, 1941-1943.	0.3	4
79	Synthesis, structure and optical properties of a Coll complex with bis(2,4,7,8,9-pentamethyldipyrrolylmethen-3-yl)methane. Mendeleev Communications, 2014, 24, 61-63.	0.6	4
80	Cadmium(II) complexes with monoiodo- and dibromodipyrromethenes: synthesis, molecular structure, spectral-luminescent properties, and stability in solutions. Russian Chemical Bulletin, 2018, 67, 1231-1240.	0.4	4
81	Complex formation of tetra(3,5-di-tert-butylphenyl)porphine with copper(II) and zinc(II) acetates in organic solvents. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2009, 35, 335-340.	0.3	3
82	The physicochemical properties of complexones, tetrapyridylporphin derivatives. Russian Journal of Physical Chemistry A, 2009, 83, 785-791.	0.1	3
83	Influence of isomerism of the ligand on the enthalpies of formation of copper tetrapyridylporphine. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2010, 36, 631-636.	0.3	3
84	Synthesis and optical properties of BF2-complexes of alkylated dipyrrolylmethenes (BODIPY). Russian Journal of General Chemistry, 2010, 80, 1214-1215.	0.3	3
85	Thermal properties of alkyl-substituted 3,3′-bis(dipyrrolylmethene) dihydrobromides. Thermochimica Acta, 2011, 523, 150-153.	1.2	3
86	Features of the solvation of meso-triphenylcorrole in organic solvents according to calorimetry. Russian Journal of Physical Chemistry A, 2013, 87, 593-597.	0.1	3
87	Preferable solvatation of decane and benzene in 1-octanol-N,N-dimethylformamide mixed solvent. Russian Journal of Physical Chemistry A, 2014, 88, 57-61.	0.1	3
88	Thermal properties and photostability of zinc(II) complexes with alkyl- and aryl-substituted dipyrrins and azadipyrrin. Russian Journal of Inorganic Chemistry, 2016, 61, 799-803.	0.3	3
89	Effect of Structure and Medium on Photostability of Halogenated Boron(III), Zinc(II), and Cadmium(II) Dipyrromethenates. Russian Journal of General Chemistry, 2018, 88, 1172-1179.	0.3	3
90	Spectral Luminescence Properties and Stability of Zinc(II) Dipyrromethenates with Different Structures in Proton-Donor Media in the Ground and Excited Electronic States. Russian Journal of Physical Chemistry A, 2019, 93, 301-307.	0.1	3

#	Article	IF	CITATIONS
91	Chemistry and Practical Application of Dipyrromethene Ligands, Salts, and Coordination Compounds as Optical Sensors for Analytes of Various Nature (A Review). Russian Journal of Inorganic Chemistry, 2022, 67, 321-337.	0.3	3
92	Energy of interaction of Ca2+ and C2O2â^' 4 lons in multicomponent liquid systems: The inhibition of urolith formation. Doklady Chemistry, 2006, 410, 150-153.	0.2	2
93	The special features of the thermal oxidative destruction of isomeric dipyrrolylmethanes. Russian Journal of Physical Chemistry A, 2006, 80, S98-S101.	0.1	2
94	Crystal solvates of tetrakis(3,5-di-t-butylphenyl)-porphyrinates Mn(III), Ni(II) and Zn(II) with pyridine. Journal of Thermal Analysis and Calorimetry, 2008, 92, 671-675.	2.0	2
95	Synthesis and spectral properties of 3,3′-bis(dipyrrolylmethene). Russian Journal of General Chemistry, 2011, 81, 2352-2354.	0.3	2
96	Crystal structure and spectral luminescent properties of monoiodo-substituted borofluoride complex with dipyrrolylmethene. Journal of Structural Chemistry, 2014, 55, 1091-1096.	0.3	2
97	Enthalpies of mixing and intermolecular interactions in N,N-dimethylformamide-chloroform systems at temperatures ranging between 288 and 308 K. Russian Journal of Physical Chemistry A, 2014, 88, 348-350.	0.1	2
98	The effect of functional substitution on thermal stability of pyridinylporphyrins under argon atmosphere. Russian Journal of General Chemistry, 2016, 86, 835-839.	0.3	2
99	Solvation and coordination interactions of tetrapyridylporphyrin in aqueous solutions. Thermal stability. Russian Journal of General Chemistry, 2017, 87, 639-650.	0.3	2
100	Stability of nonplanar N-methylporphyrins and their zinc complexes. Russian Journal of General Chemistry, 2006, 76, 482-487.	0.3	1
101	The vibrational spectra and stability of dipyrrolylmethene hydrobromides and their oxa and thia derivatives. Russian Journal of Physical Chemistry A, 2006, 80, 1093-1098.	0.1	1
102	Enthalpies of reaction of calcium chloride and sodium oxalate in an aqueous NaCl solution. Russian Journal of Inorganic Chemistry, 2009, 54, 2027-2030.	0.3	1
103	The thermochemical characteristics and kinetics of complex formation for porphyrins with a nonplanar macroring structure. Russian Journal of Physical Chemistry A, 2009, 83, 717-723.	0.1	1
104	Enthalpies of reaction of calcium chloride and sodium oxalate in aqueous solution of Tween 80. Russian Journal of Inorganic Chemistry, 2011, 56, 139-140.	0.3	1
105	Kinetics of the metal-ligand exchange of cadmium rhodo- and pyrroporphyrins with cobalt and zinc chlorides in organic solvents. Russian Journal of Inorganic Chemistry, 2013, 58, 734-739.	0.3	1
106	Synthesis and properties of FeIII complexes with deuteroporphyrin and hematoporphyrin. Russian Journal of General Chemistry, 2013, 83, 106-109.	0.3	1
107	Photonics and application of dipyrrinates in the optical devices. Journal of Physics: Conference Series, 2016, 741, 012127.	0.3	1
108	Peculiarities of Solvation of Dodecaphenylporphine in Organic Solvents. Doklady Physical Chemistry, 2002, 384, 138-140.	0.2	0

#	Article	IF	CITATIONS
109	Alkyl-Substituted Dipyrrylmethenes and Their Oxa- and Thia-Analogues: "Structure—Solvation Properties―Correlations ChemInform, 2004, 35, no.	0.1	0
110	The influence of isomerism on the enthalpies of solution of dipyrrolylmethanes. Russian Journal of Physical Chemistry A, 2007, 81, 1774-1776.	0.1	0
111	The influence of structural factors on the solvation and coordination unsaturation of metal complexes of several structurally related alkyl substituted dipyrrolylmethenes-2,2′ and porphin. Russian Journal of Physical Chemistry A, 2008, 82, 713-716.	0.1	Ο
112	Peculiarities of electrostatic interactions between amino acids and salicylic acid in aqueous solution. Biophysics (Russian Federation), 2009, 54, 139-142.	0.2	0
113	Solubility of Tetra(pyrid-3- and 4-yl)porphines and Their Complexes with d-Metals in Chloroform and Ethanol. Russian Journal of Physical Chemistry A, 2016, 90, 787-791.	0.1	0
114	Features of Photonics of Halogen-dipyrromethenates with p- and d-Elements Depending on the Ligand Structure and the Complexing Agent Type Intended for Practical Application. Russian Physics Journal, 2020, 63, 1370-1375.	0.2	0
115	A New Water-Soluble Form of BODIPY Luminophores Based on Cremophor®: Synthesis, Spectral Properties, and in vitro Study. Russian Journal of Physical Chemistry B, 2021, 15, 40-45.	0.2	Ο
116	Photonics of boron fluoride and zinc dipyrromethene complexes. , 2018, , .		0
117	Experimental and Theoretical Study of Spectroscopy of Binuclear Difluoroborate Dipyrromethene Complexes. Russian Physics Journal, 2022, 64, 2062-2069.	0.2	0