
James R Sherwood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/206078/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of Conventional and Sustainable Solvents on the Yield, Selectivity, and Recovery of Curcuminoids from Turmeric. ACS Sustainable Chemistry and Engineering, 2022, 10, 104-114.	6.7	12
2	Response to Comment on "Impact of Conventional and Sustainable Solvents on the Yield, Selectivity, and Recovery of Curcuminoids from Turmeric― ACS Sustainable Chemistry and Engineering, 2022, 10, 2273-2274.	6.7	1
3	2,5-Diethyl-2,5-Dimethyloxolane (DEDMO) as a Nonpolar, Nonperoxide-Forming Ether Solvent for Organic Synthesis. ACS Sustainable Chemistry and Engineering, 2022, 10, 4486-4493.	6.7	3
4	Solvent Screening Is Not Solvent Effect: A Review on the Most Neglected Aspect of Multicomponent Reactions. European Journal of Organic Chemistry, 2022, 2022, .	2.4	4
5	An experimental investigation into the kinetics and mechanism of the aza-Michael additions of dimethyl itaconate. Tetrahedron, 2022, , 132921.	1.9	3
6	Simple and modestly scalable synthesis of. Australian Journal of Chemistry, 2022, 75, 331-344.	0.9	3
7	3-Methoxybutan-2-one as a sustainable bio-based alternative to chlorinated solvents. RSC Advances, 2021, 11, 39412-39419.	3.6	2
8	2,2,5,5-Tetramethyloxolane (TMO) as a Solvent for Buchwald–Hartwig Aminations. ACS Sustainable Chemistry and Engineering, 2021, 9, 17330-17337.	6.7	8
9	Editorial for the "Green Chemistry―Section in the Journal Molecules: Focus on Solvents. Molecules, 2020, 25, 5151.	3.8	0
10	Direct comparison of safer or sustainable alternative dipolar aprotic solvents for use in carbon–carbon bond formation. Reaction Chemistry and Engineering, 2020, 5, 1798-1804.	3.7	15
11	Suzuki–Miyaura cross coupling is not an informative reaction to demonstrate the performance of new solvents. Beilstein Journal of Organic Chemistry, 2020, 16, 1001-1005.	2.2	13
12	Closed-Loop Recycling of Polymers Using Solvents. Johnson Matthey Technology Review, 2020, 64, 4-15.	1.0	54
13	The significance of biomass in a circular economy. Bioresource Technology, 2020, 300, 122755.	9.6	266
14	A Method of Calculating the Kamlet–Abboud–Taft Solvatochromic Parameters Using COSMO-RS. Molecules, 2019, 24, 2209.	3.8	23
15	Green synthesis of gamma-valerolactone (GVL) through hydrogenation of biomass-derived levulinic acid using non-noble metal catalysts: A critical review. Chemical Engineering Journal, 2019, 372, 992-1006.	12.7	259
16	Safer bio-based solvents to replace toluene and tetrahydrofuran for the biocatalyzed synthesis of polyesters. Green Chemistry, 2019, 21, 1686-1694.	9.0	50
17	Solvent effects in palladium catalysed cross-coupling reactions. Green Chemistry, 2019, 21, 2164-2213.	9.0	203
18	Propylene carbonate and γ-valerolactone as green solvents enhance Sn(<scp>iv</scp>)-catalysed bydroxymethylfurfural (HMF) production from bread waste. Green Chemistry, 2018, 20, 2064-2074	9.0	85

JAMES R SHERWOOD

#	Article	IF	CITATIONS
19	Optimization of Amidation Reactions Using Predictive Tools for the Replacement of Regulated Solvents with Safer Biobased Alternatives. ACS Sustainable Chemistry and Engineering, 2018, 6, 1550-1554.	6.7	14
20	Towards sustainable kinetic resolution, a combination of bio-catalysis, flow chemistry and bio-based solvents. Green Chemistry, 2018, 20, 136-140.	9.0	43
21	European Restrictions on 1,2â€Dichloroethane: Câ^'H Activation Research and Development Should Be Liberated and not Limited. Angewandte Chemie - International Edition, 2018, 57, 14286-14290.	13.8	45
22	Zum europäschen Verbot von 1,2â€Dichlorethan: Chancen für die Forschung zur Câ€Hâ€Aktivierung. Angewandte Chemie, 2018, 130, 14482-14486.	2.0	10
23	Catalyst: Possible Consequences of the N-Methyl Pyrrolidone REACH Restriction. CheM, 2018, 4, 2010-2012.	11.7	37
24	Challenges in the development of bio-based solvents: a case study on methyl(2,2-dimethyl-1,3-dioxolan-4-yl)methyl carbonate as an alternative aprotic solvent. Faraday Discussions, 2017, 202, 157-173.	3.2	39
25	Polar aprotic solvent-water mixture as the medium for catalytic production of hydroxymethylfurfural (HMF) from bread waste. Bioresource Technology, 2017, 245, 456-462.	9.6	71
26	Recirculation: A New Concept to Drive Innovation in Sustainable Product Design for Bio-Based Products. Molecules, 2017, 22, 48.	3.8	33
27	Tools and techniques for solvent selection: green solvent selection guides. Sustainable Chemical Processes, 2016, 4, .	2.3	837
28	N-Butylpyrrolidinone as a dipolar aprotic solvent for organic synthesis. Green Chemistry, 2016, 18, 3990-3996.	9.0	81
29	Circular economy design considerations for research and process development in the chemical sciences. Green Chemistry, 2016, 18, 3914-3934.	9.0	239
30	Intelligent Approach to Solvent Substitution: The Identification of a New Class of Levoglucosenone Derivatives. ChemSusChem, 2016, 9, 3503-3512.	6.8	38
31	Synthesis of cholesterol-reducing sterol esters by enzymatic catalysis in bio-based solvents or solvent-free. RSC Advances, 2016, 6, 48753-48756.	3.6	17
32	Tunable solvents: Shades of green. Chemical Engineering and Processing: Process Intensification, 2016, 99, 88-96.	3.6	60
33	Opportunities for Bio-Based Solvents Created as Petrochemical and Fuel Products Transition towards Renewable Resources. International Journal of Molecular Sciences, 2015, 16, 17101-17159.	4.1	177
34	The potential of methylsiloxanes as solvents for synthetic chemistry applications. Green Chemistry, 2014, 16, 1282-1296.	9.0	18
35	Biocatalysis in bio-derived solvents: an improved approach for medium optimisation. Green Chemistry, 2014, 16, 2107-2110.	9.0	50
36	Dihydrolevoglucosenone (Cyrene) as a bio-based alternative for dipolar aprotic solvents. Chemical Communications, 2014, 50, 9650-9652.	4.1	329

JAMES R SHERWOOD

#	Article	IF	CITATIONS
37	Cyclic Carbonates as Green Alternative Solvents for the Heck Reaction. ACS Sustainable Chemistry and Engineering, 2014, 2, 1739-1742.	6.7	168
38	The Combined Role of Catalysis and Solvent Effects on the Biginelli Reaction: Improving Efficiency and Sustainability. Chemistry - A European Journal, 2013, 19, 5174-5182.	3.3	59
39	Using metrics and sustainability considerations to evaluate the use of bio-based and non-renewable BrĄ̃,nsted acidic ionic liquids to catalyse Fischer esterification reactions. Sustainable Chemical Processes, 2013, 1, .	2.3	14
40	From waste to wealth using green chemistry. Pure and Applied Chemistry, 2013, 85, 1625-1631.	1.9	38
41	p-Cymenesulphonic acid: An organic acid synthesised from citrus waste. Catalysis Today, 2012, 190, 144-149.	4.4	24
42	A quantitative comparison between conventional and bio-derived solvents from citrus waste in esterification and amidation kinetic studies. Green Chemistry, 2012, 14, 90-93.	9.0	72
43	Expanding GSK's solvent selection guide – embedding sustainability into solvent selection starting at medicinal chemistry. Green Chemistry, 2011, 13, 854.	9.0	895