
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2060587/publications.pdf Version: 2024-02-01

SHISHENC LL

#	Article	IF	CITATIONS
1	Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Applied Materials Today, 2015, 1, 60-66.	4.3	372
2	Vertically Aligned Carbon Nanotubes Grown on Graphene Paper as Electrodes in Lithiumâ€lon Batteries and Dye‣ensitized Solar Cells. Advanced Energy Materials, 2011, 1, 486-490.	19.5	309
3	Vapour–liquid–solid growth of monolayer MoS2 nanoribbons. Nature Materials, 2018, 17, 535-542.	27.5	286
4	Metal-Catalyst-Free Growth of Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2009, 131, 2082-2083.	13.7	258
5	Discovery of a new type of topological Weyl fermion semimetal state in MoxW1â^'xTe2. Nature Communications, 2016, 7, 13643.	12.8	163
6	Bulk Synthesis of Large Diameter Semiconducting Single-Walled Carbon Nanotubes by Oxygen-Assisted Floating Catalyst Chemical Vapor Deposition. Journal of the American Chemical Society, 2011, 133, 5232-5235.	13.7	134
7	Rapid visualization of grain boundaries in monolayer MoS2 by multiphoton microscopy. Nature Communications, 2017, 8, 15714.	12.8	120
8	Exciton–Plasmon Coupling and Electromagnetically Induced Transparency in Monolayer Semiconductors Hybridized with Ag Nanoparticles. Advanced Materials, 2016, 28, 2709-2715.	21.0	115
9	Surface and Interference Coenhanced Raman Scattering of Graphene. ACS Nano, 2009, 3, 933-939.	14.6	87
10	Growth Velocity and Direct Length-Sorted Growth of Short Single-Walled Carbon Nanotubes by a Metal-Catalyst-Free Chemical Vapor Deposition Process. ACS Nano, 2009, 3, 3421-3430.	14.6	76
11	Wafer-scale and deterministic patterned growth of monolayer MoS ₂ <i>via</i> vapor–liquid–solid method. Nanoscale, 2019, 11, 16122-16129.	5.6	76
12	High temperature selective growth of single-walled carbon nanotubes with a narrow chirality distribution from a CoPt bimetallic catalyst. Chemical Communications, 2012, 48, 2409.	4.1	75
13	Synthesis and Transport Properties of Degenerate P-Type Nb-Doped WS ₂ Monolayers. Chemistry of Materials, 2019, 31, 3534-3541.	6.7	71
14	Structure, Preparation, and Applications of 2D Materialâ€Based Metal–Semiconductor Heterostructures. Small Structures, 2021, 2, 2000093.	12.0	71
15	Revealing the Atomic Defects of WS ₂ Governing Its Distinct Optical Emissions. Advanced Functional Materials, 2018, 28, 1704210.	14.9	69
16	Tunable Doping of Rhenium and Vanadium into Transition Metal Dichalcogenides for Twoâ€Dimensional Electronics. Advanced Science, 2021, 8, e2004438.	11.2	66
17	Two-dimensional alloyed transition metal dichalcogenide nanosheets: Synthesis and applications. Chinese Chemical Letters, 2022, 33, 163-176.	9.0	63
18	Two-step fabrication of single-layer rectangular SnSe flakes. 2D Materials, 2017, 4, 021026.	4.4	57

#	Article	IF	CITATIONS
19	Improving carrier mobility in two-dimensional semiconductors with rippled materials. Nature Electronics, 2022, 5, 489-496.	26.0	52
20	Shape-Engineered Synthesis of Atomically Thin 1T-SnS ₂ Catalyzed by Potassium Halides. ACS Nano, 2019, 13, 8265-8274.	14.6	51
21	Determination of Crystal Axes in Semimetallic T′â€MoTe ₂ by Polarized Raman Spectroscopy. Advanced Functional Materials, 2017, 27, 1604799.	14.9	47
22	Templateâ€Assisted Synthesis of Metallic 1T′‣n _{0.3} W _{0.7} S ₂ Nanosheets for Hydrogen Evolution Reaction. Advanced Functional Materials, 2020, 30, 1906069.	14.9	47
23	Growth of Large-Area Homogeneous Monolayer Transition-Metal Disulfides via a Molten Liquid Intermediate Process. ACS Applied Materials & Interfaces, 2020, 12, 13174-13181.	8.0	46
24	Abnormal Nearâ€Infrared Absorption in 2D Black Phosphorus Induced by Ag Nanoclusters Surface Functionalization. Advanced Materials, 2018, 30, e1801931.	21.0	43
25	Double-wall carbon nanotube transparent conductive films with excellent performance. Journal of Materials Chemistry A, 2014, 2, 1159-1164.	10.3	42
26	Manganese-Catalyzed Surface Growth of Single-Walled Carbon Nanotubes with High Efficiency. Journal of Physical Chemistry C, 2008, 112, 19231-19235.	3.1	37
27	Ultrafast transient sub-bandgap absorption of monolayer MoS2. Light: Science and Applications, 2021, 10, 27.	16.6	32
28	Ultrafast charge transfer dynamics pathways in two-dimensional MoS ₂ –graphene heterostructures: a core-hole clock approach. Physical Chemistry Chemical Physics, 2017, 19, 29954-29962.	2.8	31
29	Defect Heterogeneity in Monolayer WS ₂ Unveiled by Work Function Variance. Chemistry of Materials, 2019, 31, 7970-7978.	6.7	31
30	Seamlessly Splicing Metallic Sn <i>_x</i> Mo _{1â^'} <i>_x</i> S ₂ at MoS ₂ Edge for Enhanced Photoelectrocatalytic Performance in Microreactor. Advanced Science, 2020, 7, 2002172.	11.2	30
31	On/Off Boundary of Photocatalytic Activity between Single- and Bilayer MoS ₂ . ACS Nano, 2020, 14, 6663-6672.	14.6	29
32	Enrichment of Semiconducting Single-Walled Carbon Nanotubes by Carbothermic Reaction for Use in All-Nanotube Field Effect Transistors. ACS Nano, 2012, 6, 9657-9661.	14.6	27
33	In Situ TEM Observations on the Sulfur-Assisted Catalytic Growth of Single-Wall Carbon Nanotubes. Journal of Physical Chemistry Letters, 2014, 5, 1427-1432.	4.6	26
34	Twist Angle-Dependent Optical Responses in Controllably Grown WS ₂ Vertical Homojunctions. Chemistry of Materials, 2020, 32, 9721-9729.	6.7	25
35	Salt-assisted chemical vapor deposition of two-dimensional transition metal dichalcogenides. IScience, 2021, 24, 103229.	4.1	24
36	Na ₂ SO ₄ -Regulated High-Quality Growth of Transition Metal Dichalcogenides by Controlling Diffusion. Chemistry of Materials, 2020, 32, 5616-5625.	6.7	23

#	Article	IF	CITATIONS
37	Mixed-Salt Enhanced Chemical Vapor Deposition of Two-Dimensional Transition Metal Dichalcogenides. Chemistry of Materials, 2021, 33, 7301-7308.	6.7	22
38	Broadband Plasmon-Enhanced Four-Wave Mixing in Monolayer MoS ₂ . Nano Letters, 2021, 21, 6321-6327.	9.1	20
39	Growth of double-walled carbon nanotubes from silicon oxide nanoparticles. Carbon, 2013, 56, 167-172.	10.3	18
40	Single-step chemical vapour deposition of anti-pyramid MoS ₂ /WS ₂ vertical heterostructures. Nanoscale, 2021, 13, 4537-4542.	5.6	17
41	Difference frequency generation in monolayer MoS ₂ . Nanoscale, 2020, 12, 19638-19643.	5.6	14
42	Tunable Chemical Coupling in Two-Dimensional van der Waals Electrostatic Heterostructures. ACS Nano, 2019, 13, 11214-11223.	14.6	13
43	Formation of Highly Doped Nanostripes in 2D Transition Metal Dichalcogenides via a Dislocation Climb Mechanism. Advanced Materials, 2021, 33, e2007819.	21.0	13
44	Quantifying photoinduced carriers transport in exciton–polariton coupling of MoS2 monolayers. Npj 2D Materials and Applications, 2021, 5, .	7.9	12
45	Wafer-scale single crystals: crystal growth mechanisms, fabrication methods, and functional applications. Journal of Materials Chemistry C, 2021, 9, 7829-7851.	5.5	11
46	Giant All-Optical Modulation of Second-Harmonic Generation Mediated by Dark Excitons. ACS Photonics, 2021, 8, 2320-2328.	6.6	11
47	Perspective on 2D material polaritons and innovative fabrication techniques. Applied Physics Letters, 2022, 120, .	3.3	11
48	Flaky nano-crystalline SnSe ₂ thin films for photoelectrochemical current generation. RSC Advances, 2018, 8, 32157-32163.	3.6	10
49	Enhancing stability by tuning element ratio in 2D transition metal chalcogenides. Nano Research, 2021, 14, 1704-1710.	10.4	10
50	Probing Electronic States in Monolayer Semiconductors through Static and Transient Thirdâ€Harmonic Spectroscopies. Advanced Materials, 2022, 34, e2107104.	21.0	10
51	Wall-number selective growth of vertically aligned carbon nanotubes from FePt catalysts: a comparative study with Fe catalysts. Journal of Materials Chemistry, 2012, 22, 14149.	6.7	9
52	Growth of a cup-stacked carbon nanotube carpet with a superhydrophobic surface. New Carbon Materials, 2013, 28, 295-299.	6.1	9
53	Synthesis of high quality nitrogen-doped single-wall carbon nanotubes. Science China Materials, 2015, 58, 603-610.	6.3	9
54	Deterministic Modification of CVD Grown Monolayer MoS ₂ with Optical Pulses. Advanced Materials Interfaces, 2021, 8, 2002119.	3.7	6

#	Article	IF	CITATIONS
55	Single-particle studies on plasmon enhanced photoluminescence of monolayer MoS2 by gold nanoparticles of different shapes. Journal of Chemical Physics, 2021, 155, 234201.	3.0	6
56	Molybdenum Disulfide/Doubleâ€Wall Carbon Nanotube Mixedâ€Dimensional Heterostructures. Advanced Materials Interfaces, 2022, 9, .	3.7	6
57	Breakdown of metallic single-wall carbon nanotube paths by NiO nanoparticle point etching for high performance thin film transistors. Nanoscale, 2015, 7, 1280-1284.	5.6	3
58	Honeycomb-like single-wall carbon nanotube networks. Journal of Materials Chemistry A, 2014, 2, 3308-3311.	10.3	2
59	Strong coupling in a ID plasmonic-exciton hybrid systems. , 2020, , .		1
60	Black Phosphorus: Abnormal Near-Infrared Absorption in 2D Black Phosphorus Induced by Ag Nanoclusters Surface Functionalization (Adv. Mater. 43/2018). Advanced Materials, 2018, 30, 1870325.	21.0	0
61	Broadband Four-Wave Mixing Enhancement in 2D Transition-Metal Dichalcogenides Using Plasmonic Structures. , 2021, , .		0
62	Observing grain boundaries in monolayer molybdenum disulphide by multiphoton microscopy. , 2015, , .		0