
Jianbao Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2060531/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metallic Grapheneâ€Like VSe ₂ Ultrathin Nanosheets: Superior Potassiumâ€lon Storage and Their Working Mechanism. Advanced Materials, 2018, 30, e1800036.	11.1	341
2	Crystal Structure Modification Enhanced FeNb ₁₁ O ₂₉ Anodes for Lithiumâ€lon Batteries. ChemElectroChem, 2017, 4, 3171-3180.	1.7	139
3	Ru _{0.01} Ti _{0.99} Nb ₂ O ₇ as an intercalation-type anode material with a large capacity and high rate performance for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 8627-8635.	5.2	131
4	Cr _{0.5} Nb _{24.5} O ₆₂ Nanowires with High Electronic Conductivity for High-Rate and Long-Life Lithium-Ion Storage. ACS Nano, 2017, 11, 4217-4224.	7.3	121
5	Hollow Si/SiO _x nanosphere/nitrogen-doped carbon superstructure with a double shell and void for high-rate and long-life lithium-ion storage. Journal of Materials Chemistry A, 2018, 6, 8039-8046.	5.2	120
6	Porous TiNb ₂₄ O ₆₂ microspheres as high-performance anode materials for lithium-ion batteries of electric vehicles. Nanoscale, 2016, 8, 18792-18799.	2.8	94
7	Defective Ti2Nb10O27.1: an advanced anode material for lithium-ion batteries. Scientific Reports, 2015, 5, 17836.	1.6	81
8	Porous ZrNb ₂₄ O ₆₂ nanowires with pseudocapacitive behavior achieve high-performance lithium-ion storage. Journal of Materials Chemistry A, 2017, 5, 22297-22304.	5.2	71
9	Advanced composites of complex Ti-based oxides as anode materials for lithium-ion batteries. Advanced Composites and Hybrid Materials, 2018, 1, 440-459.	9.9	55
10	Intercalating Ti ₂ Nb ₁₄ O ₃₉ Anode Materials for Fastâ€Charging, Highâ€Capacity and Safe Lithium–Ion Batteries. Small, 2017, 13, 1702903.	5.2	50
11	GaNb ₁₁ O ₂₉ Nanowebs as High-Performance Anode Materials for Lithium-Ion Batteries. ACS Applied Nano Materials, 2018, 1, 183-190.	2.4	50
12	Enhanced photoelectrochemical performance of quantum dot-sensitized TiO ₂ nanotube arrays with Al ₂ O ₃ overcoating by atomic layer deposition. Physical Chemistry Chemical Physics, 2016, 18, 17404-17413.	1.3	44
13	Purification of biosilica from living diatoms by a two-step acid cleaning and baking method. Journal of Applied Phycology, 2014, 26, 1511-1518.	1.5	42
14	CH ₃ NH ₃ PbI ₃ grain growth and interfacial properties in meso-structured perovskite solar cells fabricated by two-step deposition. Science and Technology of Advanced Materials, 2017, 18, 253-262.	2.8	42
15	Energetic alignment in nontoxic SnS quantum dot-sensitized solar cell employing spiro-OMeTAD as the solid-state electrolyte. Science and Technology of Advanced Materials, 2014, 15, 035006.	2.8	39
16	Preparation of boron nitride nanosheet-coated carbon fibres and their enhanced antioxidant and microwave-absorbing properties. RSC Advances, 2018, 8, 17944-17949.	1.7	37
17	Water-assisted chemical vapor deposition synthesis of boron nitride nanotubes and their photoluminescence property. Nanotechnology, 2013, 24, 365605.	1.3	36
18	Allâ€Solutionâ€Processed Cu ₂ ZnSnS ₄ Solar Cells with Selfâ€Depleted Na ₂ S Back Contact Modification Layer. Advanced Functional Materials, 2018, 28, 1703369.	7.8	36

Jianbao Li

#	Article	IF	CITATIONS
19	Extrinsic effects on dielectric response of ultrafine grain BaTiO3 ceramics. Applied Physics Letters, 2010, 97, 162913.	1.5	30
20	TiNb ₂ O ₇ nanorods as a novel anode material for secondary lithium-ion batteries. Functional Materials Letters, 2016, 09, 1642004.	0.7	26
21	Bending Durable and Recyclable Mesostructured Perovskite Solar Cells Based on Superaligned ZnO Nanorod Electrode. Solar Rrl, 2018, 2, 1700194.	3.1	25
22	Magneto-sensitive bistable soft actuators: Experiments, simulations, and applications. Applied Physics Letters, 2018, 113, .	1.5	25
23	Al3+-doped FeNb11O29 anode materials with enhanced lithium-storage performance. Advanced Composites and Hybrid Materials, 2021, 4, 733-742.	9.9	21
24	A co-precipitation and annealing route to the large-quantity synthesis of boron nitride nanotubes. Solid State Sciences, 2013, 25, 39-44.	1.5	18
25	Finite element analysis on flexural strength of Al2O3-ZrO2 composite ceramics with different proportions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 738, 213-218.	2.6	18
26	Effects of geometric and crystal structures on the photoelectrical properties of highly ordered TiO ₂ nanotube arrays. Journal of Materials Research, 2012, 27, 1029-1036.	1.2	16
27	Synthesis of boron carbonitride nanosheets using for delivering paclitaxel and their antitumor activity. Colloids and Surfaces B: Biointerfaces, 2021, 198, 111479.	2.5	16
28	Effect of talc and titania on the microstructure and mechanical properties of alumina ceramics. International Journal of Applied Ceramic Technology, 2018, 15, 633-642.	1.1	14
29	Gamma-phase CsPbBr3 perovskite nanocrystals/polymethyl methacrylate electrospun nanofibrous membranes with superior photo-catalytic property. Journal of Chemical Physics, 2020, 153, 024703.	1.2	14
30	Inverted Perovskite Solar Cells with Efficient Mixedâ€Fullerene Derivative Charge Extraction Layers. ChemistrySelect, 2018, 3, 6802-6809.	0.7	13
31	Wellâ€ordered arrays of ferroelectric singleâ€crystalline BaTiO ₃ nanostructures. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 714-717.	0.8	12
32	Preparation of nanocrystalline BaTiO3 ceramics. Science in China Series D: Earth Sciences, 2009, 52, 1730-1734.	0.9	9
33	An effective route for the synthesis of boron nitride micro-nano structures and the growth mechanism. CrystEngComm, 2015, 17, 1098-1105.	1.3	9
34	A rapid sample processing method to observe diatoms via scanning electron microscopy. Journal of Applied Phycology, 2015, 27, 243-248.	1.5	9
35	Strengthening the Mechanical Performance of Sea Urchin Skeleton by Tube Feet Pore. Journal of Bionic Engineering, 2019, 16, 66-75.	2.7	8
36	Titanium-containing complex oxides as anode materials for lithium-ion batteries: a review. Materials Technology, 2015, 30, A192-A202.	1.5	6

Jianbao Li

#	Article	IF	CITATIONS
37	Biomimetic preparation of a ceramic combined with sea urchin stereom structure and nacre mineral bridge structure. Materials and Design, 2019, 178, 107844.	3.3	6
38	Analysis of strengthening and toughening mechanisms of bioinspired mineral bridges on hot-pressed alumina-based ceramics through finite element method. Ceramics International, 2019, 45, 11251-11257.	2.3	6
39	Ferroelectricity of nanocrystalline BaTiO3 ceramics by first principle calculation. Science Bulletin, 2010, 55, 2182-2185.	1.7	5
40	All Solutionâ€Processed Cu ₂ ZnSnS ₄ Solar Cell by Using Highâ€Boilingâ€Point Solvent Treated Ballâ€Milling Process with Efficiency Exceeding 6%. ChemistrySelect, 2019, 4, 982-989.	0.7	4
41	Temperature-Dependent Morphology Evolution of Boron Nitride and Boron Carbonitride Nanostructures. Journal of Nanomaterials, 2019, 2019, 1-11.	1.5	2
42	All‣ayer Sputteringâ€Free Cu2Zn1â€xCdxSnS4 Solar Cell with Efficiency Exceeding 7.5%. ChemistrySelect, 2019, 4, 5979-5983.	0.7	1