David P Rice

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2060464/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Disruption of Fgf10/Fgfr2b-coordinated epithelial-mesenchymal interactions causes cleft palate. Journal of Clinical Investigation, 2004, 113, 1692-1700.	8.2	312
2	Progression of calvarial bone development requires Foxc1 regulation of Msx2 and Alx4. Developmental Biology, 2003, 262, 75-87.	2.0	116
3	Gli3-mediated somitic Fgf10 expression gradients are required for the induction and patterning of mammary epithelium along the embryonic axes. Development (Cambridge), 2006, 133, 2325-2335.	2.5	106
4	Expression patterns of Hedgehog signalling pathway members during mouse palate development. Gene Expression Patterns, 2006, 6, 206-212.	0.8	82
5	Developmental Anatomy of Craniofacial Sutures. Frontiers of Oral Biology, 2008, 12, 1-21.	1.5	76
6	Cell fate specification during calvarial bone and suture development. Developmental Biology, 2007, 311, 335-346.	2.0	75
7	Mutant p63 causes defective expansion of ectodermal progenitor cells and impaired FGF signalling in AEC syndrome. EMBO Molecular Medicine, 2012, 4, 192-205.	6.9	68
8	Gli3Xt-J/Xt-J mice exhibit lambdoid suture craniosynostosis which results from altered osteoprogenitor proliferation and differentiation. Human Molecular Genetics, 2010, 19, 3457-3467.	2.9	60
9	Evidence that Fgf10 contributes to the skeletal and visceral defects of an apert syndrome mouse model. Developmental Dynamics, 2009, 238, 376-385.	1.8	48
10	A regulatory relationship between Tbx1 and FGF signaling during tooth morphogenesis and ameloblast lineage determination. Developmental Biology, 2008, 320, 39-48.	2.0	45
11	The essential requirement for Runx1 in the development of the sternum. Developmental Biology, 2010, 340, 539-546.	2.0	44
12	Runx1 is involved in the fusion of the primary and the secondary palatal shelves. Developmental Biology, 2009, 326, 392-402.	2.0	40
13	Clinical Features of Syndromic Craniosynostosis. Frontiers of Oral Biology, 2008, 12, 91-106.	1.5	39
14	Regulation of <i>Twist</i> , <i>Snail</i> , and <i>Id1</i> is conserved between the developing murine palate and tooth. Developmental Dynamics, 2005, 234, 28-35.	1.8	37
15	Foxc1 integrates Fgf and Bmp signalling independently of twist or noggin during calvarial bone development. Developmental Dynamics, 2005, 233, 847-852.	1.8	35
16	Core Binding Factor Beta Functions in the Maintenance of Stem Cells and Orchestrates Continuous Proliferation and Differentiation in Mouse Incisors. Stem Cells, 2011, 29, 1792-1803.	3.2	30
17	Locate, Condense, Differentiate, Grow and Confront: Developmental Mechanisms Controlling Intramembranous Bone and Suture Formation and Function. , 2008, 12, 22-40.		27
18	Noggin null allele mice exhibit a microform of holoprosencephaly. Human Molecular Genetics, 2011, 20, 4005-4015.	2.9	26

DAVID P RICE

#	Article	IF	CITATIONS
19	Regulation of Calvarial Osteogenesis by Concomitant De-repression of GLI3 and Activation of IHH Targets. Frontiers in Physiology, 2017, 8, 1036.	2.8	24
20	Prevention of Premature Fusion of Calvarial Suture in GLI-Kruppel Family Member 3 (Gli3)-deficient Mice by Removing One Allele of Runt-related Transcription Factor 2 (Runx2). Journal of Biological Chemistry, 2012, 287, 21429-21438.	3.4	22
21	Convergent signalling through Fgfr2 regulates divergent craniofacial morphogenesis. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2009, 312B, 351-360.	1.3	21
22	RAB23 coordinates early osteogenesis by repressing FGF10-pERK1/2 and GLI1. ELife, 2020, 9, .	6.0	13
23	FGF and EDA pathways control initiation and branching of distinct subsets of developing nasal glands. Developmental Biology, 2016, 419, 348-356.	2.0	8
24	Long-term (≥15 years) post-treatment changes and outcome quality after Class II:1 treatment in comparison to untreated Class I controls. European Journal of Orthodontics, 2018, 40, 206-213.	2.4	8
25	Dental Epithelial Stem Cells Express the Developmental Regulator Meis1. Frontiers in Physiology, 2019, 10, 249.	2.8	7
26	Blepharocheilodontic (BCD) syndrome: New insights on craniofacial and dental features. American Journal of Medical Genetics, Part A, 2017, 173, 905-913.	1.2	6
27	Outcome quality and long-term (≥15 years) stability after Class II:2 Herbst-multibracket appliance treatment in comparison to untreated Class I controls. European Journal of Orthodontics, 2018, 40, 488-495.	2.4	4
28	Taurodontism in the first permanent molars in Van der Woude syndrome compared to isolated cleft palate. European Journal of Orthodontics, 2021, 43, 29-35.	2.4	3
29	Tooth Agenesis. , 2017, , 67-84.		2
30	Dental age, agenesis, and morphological anomalies in individuals with Van der Woude syndrome and isolated cleft palate. European Journal of Orthodontics, 2021, 43, 387-393.	2.4	2
31	Craniofacial Embryogenetics and Development. European Journal of Orthodontics, 2019, 41, 557-557.	2.4	0
32	Editor's Report 2019. European Journal of Orthodontics, 2020, 42, 357-358.	2.4	0
33	Editor's Report 2020. European Journal of Orthodontics, 2021, 43, 243-244.	2.4	0
34	Editor's Report 2021. European Journal of Orthodontics, 2022, 44, 241-242.	2.4	0