Yahya Mahmoodkhani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2060383/publications.pdf

Version: 2024-02-01

840776 940533 16 910 11 16 g-index citations h-index papers 17 17 17 739 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Effect of Bridge Geometry on Microstructure and Texture Evolution During Porthole Die Extrusion of an Al–Mg–Si–Mn–Cr Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 3503.	2.2	10
2	Customizing mechanical properties of additively manufactured Hastelloy X parts by adjusting laser scanning speed. Journal of Alloys and Compounds, 2020, 812, 152097.	5 . 5	62
3	Heat source model calibration for thermal analysis of laser powder-bed fusion. International Journal of Advanced Manufacturing Technology, 2020, 106, 3367-3379.	3.0	34
4	Study of powder recycling and its effect on printed parts during laser powder-bed fusion of 17-4 PH stainless steel. Journal of Materials Processing Technology, 2020, 278, 116522.	6.3	71
5	Experimental and numerical investigation on the effect of layer thickness during laser powder-bed fusion of stainless steel 17-4PH. International Journal of Rapid Manufacturing, 2020, 9, 212.	0.5	8
6	On the measurement of effective powder layer thickness in laserÂpowder-bed fusion additive manufacturing of metals. Progress in Additive Manufacturing, 2019, 4, 109-116.	4.8	33
7	3-Dimensional heat transfer modeling for laser powder-bed fusion additive manufacturing with volumetric heat sources based on varied thermal conductivity and absorptivity. Optics and Laser Technology, 2019, 109, 297-312.	4.6	172
8	Controlling mechanical properties of additively manufactured hastelloy X by altering solidification pattern during laser powder-bed fusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 762, 138081.	5.6	96
9	An investigation into the effect of process parameters on melt pool geometry, cell spacing, and grain refinement during laser powder bed fusion. Optics and Laser Technology, 2019, 116, 83-91.	4.6	102
10	Identification and characterization of spatter particles and their effect on surface roughness, density and mechanical response of 17-4â€⁻PH stainless steel laser powder-bed fusion parts. Materials Science & Degineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 756, 98-107.	5.6	81
11	On the effect of spatter particles distribution on the quality of Hastelloy X parts made by laser powder-bed fusion additive manufacturing. Journal of Manufacturing Processes, 2019, 37, 11-20.	5.9	84
12	On the measurement of relative powder-bed compaction density in powder-bed additive manufacturing processes. Materials and Design, 2018, 155, 495-501.	7.0	89
13	Prediction of the Hot Flow Stress Behavior of AA6063 Including Mg2Si Dissolution. Journal of Materials Engineering and Performance, 2017, 26, 1186-1194.	2.5	8
14	The Development of Grain Structure During Axisymmetric Extrusion of AA3003 Aluminum Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 5920-5932.	2.2	8
15	Modeling the Formation of Transverse Weld during Billet-on-Billet Extrusion. Materials, 2014, 7, 3470-3480.	2.9	10
16	Numerical modelling of the material flow during extrusion of aluminium alloys and transverse weld formation. Journal of Materials Processing Technology, 2014, 214, 688-700.	6.3	41