List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2060328/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Highly Structured, Nuclease-Resistant, Noncoding RNA Produced by Flaviviruses Is Required for Pathogenicity. Cell Host and Microbe, 2008, 4, 579-591.	5.1	420
2	Thirty years of baculovirus–insect cell protein expression: from dark horse to mainstream technology. Journal of General Virology, 2015, 96, 6-23.	1.3	264
3	Noncoding Flavivirus RNA Displays RNA Interference Suppressor Activity in Insect and Mammalian Cells. Journal of Virology, 2012, 86, 13486-13500.	1.5	248
4	Chikungunya Virus Nonstructural Protein 2 Inhibits Type I/II Interferon-Stimulated JAK-STAT Signaling. Journal of Virology, 2010, 84, 10877-10887.	1.5	209
5	Role of Nonstructural Protein NS2A in Flavivirus Assembly. Journal of Virology, 2008, 82, 4731-4741.	1.5	195
6	West Nile virus encodes a microRNA-like small RNA in the 3' untranslated region which up-regulates GATA4 mRNA and facilitates virus replication in mosquito cells. Nucleic Acids Research, 2012, 40, 2210-2223.	6.5	194
7	Noncoding Subgenomic Flavivirus RNA: Multiple Functions in West Nile Virus Pathogenesis and Modulation of Host Responses. Viruses, 2014, 6, 404-427.	1.5	148
8	Chikungunya Virus nsP3 Blocks Stress Granule Assembly by Recruitment of G3BP into Cytoplasmic Foci. Journal of Virology, 2012, 86, 10873-10879.	1.5	143
9	Identification of pif-2, a third conserved baculovirus gene required for per os infection of insects. Journal of General Virology, 2003, 84, 2041-2049.	1.3	126
10	Effective Chikungunya Virus-like Particle Vaccine Produced in Insect Cells. PLoS Neglected Tropical Diseases, 2013, 7, e2124.	1.3	122
11	Induction and suppression of tick cell antiviral RNAi responses by tick-borne flaviviruses. Nucleic Acids Research, 2014, 42, 9436-9446.	6.5	118
12	Mosquito co-infection with Zika and chikungunya virus allows simultaneous transmission without affecting vector competence of Aedes aegypti. PLoS Neglected Tropical Diseases, 2017, 11, e0005654.	1.3	110
13	Alphavirus Infection: Host Cell Shut-Off and Inhibition of Antiviral Responses. Viruses, 2016, 8, 166.	1.5	104
14	Comparative Usutu and West Nile virus transmission potential by local Culex pipiens mosquitoes in north-western Europe. One Health, 2015, 1, 31-36.	1.5	103
15	Mechanism and structural diversity of exoribonuclease-resistant RNA structures in flaviviral RNAs. Nature Communications, 2018, 9, 119.	5.8	95
16	Pivotal Role of the Non-hr Origin of DNA Replication in the Genesis of Defective Interfering Baculoviruses. Journal of Virology, 2002, 76, 5605-5611.	1.5	92
17	Mosquito and <i>Drosophila</i> entomobirnaviruses suppress dsRNA- and siRNA-induced RNAi. Nucleic Acids Research, 2014, 42, 8732-8744.	6.5	91
18	Vector competence of northern European Culex pipiens biotypes and hybrids for West Nile virus is differentially affected by temperature. Parasites and Vectors, 2016, 9, 393.	1.0	88

GORBEN P PIJLMAN

#	Article	IF	CITATIONS
19	Functional processing and secretion of Chikungunya virus E1 and E2 glycoproteins in insect cells. Virology Journal, 2011, 8, 353.	1.4	85
20	Vector competence of European mosquitoes for West Nile virus. Emerging Microbes and Infections, 2017, 6, 1-13.	3.0	85
21	Spontaneous excision of BAC vector sequences from bacmid-derived baculovirus expression vectors upon passage in insect cells. Journal of General Virology, 2003, 84, 2669-2678.	1.3	84
22	Autographa californica Baculoviruses with Large Genomic Deletions Are Rapidly Generated in Infected Insect Cells. Virology, 2001, 283, 132-138.	1.1	82
23	Capsid-like particles decorated with the SARS-CoV-2 receptor-binding domain elicit strong virus neutralization activity. Nature Communications, 2021, 12, 324.	5.8	79
24	Mosquito Small RNA Responses to West Nile and Insect-Specific Virus Infections in Aedes and Culex Mosquito Cells. Viruses, 2019, 11, 271.	1.5	72
25	Kunjin virus replicons: an RNA-based, non-cytopathic viral vector system for protein production, vaccine and gene therapy applications. Expert Opinion on Biological Therapy, 2006, 6, 135-145.	1.4	70
26	Functional RNA during Zika virus infection. Virus Research, 2018, 254, 41-53.	1.1	69
27	Chikungunya virus-like particles are more immunogenic in a lethal AG129 mouse model compared to glycoprotein E1 or E2 subunits. Vaccine, 2013, 31, 6092-6096.	1.7	68
28	Cloning of biologically active genomes from a Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus isolate by using a bacterial artificial chromosome. Virus Research, 2003, 97, 57-63.	1.1	63
29	The C-Terminal Domain of Chikungunya Virus nsP2 Independently Governs Viral RNA Replication, Cytopathicity, and Inhibition of Interferon Signaling. Journal of Virology, 2013, 87, 10394-10400.	1.5	63
30	Chikungunya virus non-structural protein 2-mediated host shut-off disables the unfolded protein response. Journal of General Virology, 2015, 96, 580-589.	1.3	60
31	Subgenomic flavivirus RNA binds the mosquito DEAD/H-box helicase ME31B and determines Zika virus transmission by <i>Aedes aegypti</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19136-19144.	3.3	60
32	West Nile Virus: High Transmission Rate in North-Western European Mosquitoes Indicates Its Epidemic Potential and Warrants Increased Surveillance. PLoS Neglected Tropical Diseases, 2015, 9, e0003956.	1.3	55
33	Arbovirus vaccines; opportunities for the baculovirus-insect cell expression system. Journal of Invertebrate Pathology, 2011, 107, S16-S30.	1.5	51
34	A Heritable Antiviral RNAi Response Limits Orsay Virus Infection in Caenorhabditis elegans N2. PLoS ONE, 2014, 9, e89760.	1.1	50
35	Recombinant Modified Vaccinia Virus Ankara Expressing Glycoprotein E2 of Chikungunya Virus Protects AG129 Mice against Lethal Challenge. PLoS Neglected Tropical Diseases, 2014, 8, e3101.	1.3	45
36	Transmission of Rift Valley fever virus from European-breed lambs to Culex pipiens mosquitoes. PLoS Neglected Tropical Diseases, 2017, 11, e0006145.	1.3	42

#	Article	IF	CITATIONS
37	The Methyltransferase-Like Domain of Chikungunya Virus nsP2 Inhibits the Interferon Response by Promoting the Nuclear Export of STAT1. Journal of Virology, 2018, 92, .	1.5	40
38	Mosquito Rasputin interacts with chikungunya virus nsP3 and determines the infection rate in Aedes albopictus. Parasites and Vectors, 2015, 8, 464.	1.0	39
39	Evaluation of baculovirus expression vectors with enhanced stability in continuous cascaded insect-cell bioreactors. Biotechnology and Bioengineering, 2004, 87, 743-753.	1.7	38
40	Infectious Bronchitis Coronavirus Inhibits STAT1 Signaling and Requires Accessory Proteins for Resistance to Type I Interferon Activity. Journal of Virology, 2015, 89, 12047-12057.	1.5	38
41	Virus interferes with host-seeking behaviour of mosquito. Journal of Experimental Biology, 2017, 220, 3598-3603.	0.8	33
42	Enveloped virusâ€like particles as vaccines against pathogenic arboviruses. Biotechnology Journal, 2015, 10, 659-670.	1.8	32
43	Translation of the Flavivirus Kunjin NS3 Gene in cis but Not Its RNA Sequence or Secondary Structure Is Essential for Efficient RNA Packaging. Journal of Virology, 2006, 80, 11255-11264.	1.5	31
44	Stabilized baculovirus vector expressing a heterologous gene and GP64 from a single bicistronic transcript. Journal of Biotechnology, 2006, 123, 13-21.	1.9	30
45	The invasive Asian bush mosquito Aedes japonicus found in the Netherlands can experimentally transmit Zika virus and Usutu virus. PLoS Neglected Tropical Diseases, 2020, 14, e0008217.	1.3	30
46	Low Temperature-Dependent Salmonid Alphavirus Glycoprotein Processing and Recombinant Virus-Like Particle Formation. PLoS ONE, 2011, 6, e25816.	1.1	29
47	Two-Component Nanoparticle Vaccine Displaying Glycosylated Spike S1 Domain Induces Neutralizing Antibody Response against SARS-CoV-2 Variants. MBio, 2021, 12, e0181321.	1.8	28
48	A Tale of 20 Alphaviruses; Inter-species Diversity and Conserved Interactions Between Viral Non-structural Protein 3 and Stress Granule Proteins. Frontiers in Cell and Developmental Biology, 2021, 9, 625711.	1.8	25
49	Salmonid alphavirus glycoprotein E2 requires low temperature and E1 for virion formation and induction of protective immunity. Vaccine, 2014, 32, 6206-6212.	1.7	23
50	Human to human transmission of arthropod-borne pathogens. Current Opinion in Virology, 2017, 22, 13-21.	2.6	22
51	Why do Individuals Differ in Viral Susceptibility? A Story Told by Model Organisms. Viruses, 2017, 9, 284.	1.5	22
52	Flavivirus RNAi suppression: decoding non-coding RNA. Current Opinion in Virology, 2014, 7, 55-60.	2.6	21
53	Competition between Usutu virus and West Nile virus during simultaneous and sequential infection of <i>Culex pipiens</i> mosquitoes. Emerging Microbes and Infections, 2020, 9, 2642-2652.	3.0	21
54	Impact of Gut Bacteria on the Infection and Transmission of Pathogenic Arboviruses by Biting Midges and Mosquitoes. Microbial Ecology, 2020, 80, 703-717.	1.4	19

#	Article	IF	CITATIONS
55	Salmonid alphavirus replication in mosquito cells: towards a novel vaccine production system. Microbial Biotechnology, 2014, 7, 480-484.	2.0	18
56	Dengue Non-coding RNA: TRIMmed for Transmission. Cell Host and Microbe, 2015, 18, 133-134.	5.1	18
5 7	Kunjin replicon-based simian immunodeficiency virus gag vaccines. Vaccine, 2008, 26, 3268-3276.	1.7	17
58	Conserved motifs in the hypervariable domain of chikungunya virus nsP3 required for transmission by Aedes aegypti mosquitoes. PLoS Neglected Tropical Diseases, 2018, 12, e0006958.	1.3	17
59	Cell line-specific accumulation of the baculovirus non-hr origin of DNA replication in infected insect cells. Journal of Invertebrate Pathology, 2003, 84, 214-219.	1.5	16
60	Immunogenicity and protective efficacy of recombinant Modified Vaccinia virus Ankara candidate vaccines delivering West Nile virus envelope antigens. Vaccine, 2016, 34, 1915-1926.	1.7	16
61	Complex dynamics of defective interfering baculoviruses during serial passage in insect cells. Journal of Biological Physics, 2013, 39, 327-342.	0.7	15
62	Production of Chikungunya Virus-Like Particles and Subunit Vaccines in Insect Cells. Methods in Molecular Biology, 2016, 1426, 297-309.	0.4	15
63	Insect-Specific Flavivirus Replication in Mammalian Cells Is Inhibited by Physiological Temperature and the Zinc-Finger Antiviral Protein. Viruses, 2021, 13, 573.	1.5	15
64	The dinucleotide composition of the Zika virus genome is shaped by conflicting evolutionary pressures in mammalian hosts and mosquito vectors. PLoS Biology, 2021, 19, e3001201.	2.6	15
65	Immunogenicity in Rabbits of Virus-Like Particles from a Contemporary Rabbit Haemorrhagic Disease Virus Type 2 (Gl.2/RHDV2/b) Isolated in The Netherlands. Viruses, 2019, 11, 553.	1.5	14
66	Identification of Spodoptera exigua nucleopolyhedrovirus genes involved in pathogenicity and virulence. Journal of Invertebrate Pathology, 2015, 126, 43-50.	1.5	13
67	Punctuated Loci on Chromosome IV Determine Natural Variation in Orsay Virus Susceptibility of <i>Caenorhabditis elegans</i> Strains Bristol N2 and Hawaiian CB4856. Journal of Virology, 2021, 95, .	1.5	13
68	Function of Chikungunya Virus Structural Proteins. , 2016, , 63-74.		13
69	Relocation of the attTn7 Transgene Insertion Site in Bacmid DNA Enhances Baculovirus Genome Stability and Recombinant Protein Expression in Insect Cells. Viruses, 2020, 12, 1448.	1.5	11
70	A sensitive epitope-blocking ELISA for the detection of Chikungunya virus-specific antibodies in patients. Journal of Virological Methods, 2015, 222, 55-61.	1.0	10
71	Experimental adaptation of dengue virus 1 to Aedes albopictus mosquitoes by in vivo selection. Scientific Reports, 2020, 10, 18404.	1.6	10
72	Reverse Genetics System for Shuni Virus, an Emerging Orthobunyavirus with Zoonotic Potential. Viruses, 2020, 12, 455.	1.5	8

#	Article	IF	CITATIONS
73	Hairpin structures with conserved sequence motifs determine the 3′ ends of non-polyadenylated invertebrate iridovirus transcripts. Virology, 2017, 511, 344-353.	1.1	7
74	Effect of blood source on vector competence of Culex pipiens biotypes for Usutu virus. Parasites and Vectors, 2021, 14, 194.	1.0	7
75	Balancing Selection of the Intracellular Pathogen Response in Natural Caenorhabditis elegans Populations. Frontiers in Cellular and Infection Microbiology, 2021, 11, 758331.	1.8	7
76	Alphavirus capsid proteins selfâ€assemble into coreâ€like particles in insect cells: A promising platform for nanoparticle vaccine development. Biotechnology Journal, 2016, 11, 266-273.	1.8	6
77	Veterinary Replicon Vaccines. Annual Review of Animal Biosciences, 2017, 5, 89-109.	3.6	6
78	Herpes Simplex Virus 1 Can Enter Dynamin 1 and 2 Double-Knockout Fibroblasts. Journal of Virology, 2019, 93, .	1.5	6
79	Heat Stress Reduces the Susceptibility of Caenorhabditis elegans to Orsay Virus Infection. Genes, 2021, 12, 1161.	1.0	6
80	Virus infection modulates male sexual behaviour in <i>Caenorhabditis elegans</i> . Molecular Ecology, 2021, 30, 6776-6790.	2.0	6
81	An S1-Nanoparticle Vaccine Protects against SARS-CoV-2 Challenge in K18-hACE2 Mice. Journal of Virology, 2022, 96, .	1.5	6
82	Forced Zika Virus Infection of Culex pipiens Leads to Limited Virus Accumulation in Mosquito Saliva. Viruses, 2020, 12, 659.	1.5	4
83	Caprine MAVS Is a RIG-I Interacting Type I Interferon Inducer Downregulated by Peste des Petits Ruminants Virus Infection. Viruses, 2021, 13, 409.	1.5	3
84	Secreted Trimeric Chikungunya Virus Spikes from Insect Cells: Production, Purification, and Glycosylation Status. Processes, 2022, 10, 162.	1.3	1
85	Chikungunya and Zika Virus Vaccines. , 2018, , 347-365.		0