Adam S Adler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2060311/publications.pdf Version: 2024-02-01

ADAM S ADIED

#	Article	IF	CITATIONS
1	Predicting antibody binders and generating synthetic antibodies using deep learning. MAbs, 2022, 14, 2069075.	2.6	17
2	Generation of recombinant hyperimmune globulins from diverse B-cell repertoires. Nature Biotechnology, 2021, 39, 989-999.	9.4	13
3	Single-cell transcriptomics reveals the effect of PD-L1/TGF-β blockade on the tumor microenvironment. BMC Biology, 2021, 19, 107.	1.7	14
4	Affinity maturation of antibodies by combinatorial codon mutagenesis versus error-prone PCR. MAbs, 2020, 12, 1803646.	2.6	9
5	Massively parallel interrogation and mining of natively paired human TCRαβ repertoires. Nature Biotechnology, 2020, 38, 609-619.	9.4	34
6	Preferential Identification of Agonistic OX40 Antibodies by Using Cell Lysate to Pan Natively Paired, Humanized Mouse-Derived Yeast Surface Display Libraries. Antibodies, 2019, 8, 17.	1.2	9
7	Antibody repertoire analysis of mouse immunization protocols using microfluidics and molecular genomics. MAbs, 2019, 11, 870-883.	2.6	29
8	A natively paired antibody library yields drug leads with higher sensitivity and specificity than a randomly paired antibody library. MAbs, 2018, 10, 431-443.	2.6	28
9	Rare, high-affinity anti-pathogen antibodies from human repertoires, discovered using microfluidics and molecular genomics. MAbs, 2017, 9, 1282-1296.	2.6	32
10	Rare, high-affinity mouse anti-PD-1 antibodies that function in checkpoint blockade, discovered using microfluidics and molecular genomics. MAbs, 2017, 9, 1270-1281.	2.6	26
11	An integrative analysis of colon cancer identifies an essential function for PRPF6 in tumor growth. Genes and Development, 2014, 28, 1068-1084.	2.7	95
12	Monoclonal antibody humanness score and its applications. BMC Biotechnology, 2013, 13, 55.	1.7	60
13	Lactate Dehydrogenase B Is Required for the Growth of KRAS-Dependent Lung Adenocarcinomas. Clinical Cancer Research, 2013, 19, 773-784.	3.2	106
14	CDK8 Maintains Tumor Dedifferentiation and Embryonic Stem Cell Pluripotency. Cancer Research, 2012, 72, 2129-2139.	0.4	94
15	The Transcription Factor ZNF217 Is a Prognostic Biomarker and Therapeutic Target during Breast Cancer Progression. Cancer Discovery, 2012, 2, 638-651.	7.7	61
16	An Integrated Genomic Screen Identifies LDHB as an Essential Gene for Triple-Negative Breast Cancer. Cancer Research, 2012, 72, 5812-5823.	0.4	153
17	G1 arrest and differentiation can occur independently of Rb family function. Journal of Cell Biology, 2010, 191, 809-825.	2.3	30
18	The histone demethylase UTX enables RB-dependent cell fate control. Genes and Development, 2010, 24, 327-332.	2.7	135

ADAM S ADLER

#	Article	IF	CITATIONS
19	Molecular framework for response to imatinib mesylate in systemic sclerosis. Arthritis and Rheumatism, 2009, 60, 584-591.	6.7	117
20	SIRT6 Links Histone H3 Lysine 9 Deacetylation to NF-κB-Dependent Gene Expression and Organismal Life Span. Cell, 2009, 136, 62-74.	13.5	967
21	CSN5 Isopeptidase Activity Links COP9 Signalosome Activation to Breast Cancer Progression. Cancer Research, 2008, 68, 506-515.	0.4	67
22	Systematic functional characterization of <i>cis</i> -regulatory motifs in human core promoters. Genome Research, 2008, 18, 477-488.	2.4	57
23	A C-terminal Sequence in the Guanine Nucleotide Exchange Factor Sec7 Mediates Golgi Association and Interaction with the Rsp5 Ubiquitin Ligase. Journal of Biological Chemistry, 2008, 283, 34188-34196.	1.6	13
24	Reversal of aging by NFκB blockade. Cell Cycle, 2008, 7, 556-559.	1.3	103
25	Revealing Targeted Therapy for Human Cancer by Gene Module Maps. Cancer Research, 2008, 68, 369-378.	0.4	58
26	Global Expression Profiling in Atopic Eczema Reveals Reciprocal Expression of Inflammatory and Lipid Genes. PLoS ONE, 2008, 3, e4017.	1.1	75
27	A Transcriptional Program Mediating Entry into Cellular Quiescence. PLoS Genetics, 2007, 3, e91.	1.5	67
28	Motif module map reveals enforcement of aging by continual NF-κB activity. Genes and Development, 2007, 21, 000.1-000.	2.7	407
29	Decoding global gene expression programs in liver cancer by noninvasive imaging. Nature Biotechnology, 2007, 25, 675-680.	9.4	510
30	Genetic regulators of large-scale transcriptional signatures in cancer. Nature Genetics, 2006, 38, 421-430.	9.4	204
31	From Description to Causality: Mechanisms of Gene Expression Signatures in Cancer. Cell Cycle, 2006, 5, 1148-1151.	1.3	21
32	MYC Can Induce DNA Breaks In vivo and In vitro Independent of Reactive Oxygen Species. Cancer Research, 2006, 66, 6598-6605.	0.4	86
33	The Rsp5 Ubiquitin Ligase Binds to and Ubiquitinates Members of the Yeast CIN85-Endophilin Complex, Sla1-Rvs167. Journal of Biological Chemistry, 2004, 279, 16017-16025.	1.6	73
34	The C2 domain of the Rsp5 ubiquitin ligase binds membrane phosphoinositides and directs ubiquitination of endosomal cargo. Journal of Cell Biology, 2004, 165, 135-144.	2.3	137