Weimin Sun

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2060135/weimin-sun-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

97 2,219 29 43 g-index

103 3,080 7.1 5.4 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
97	The composition, biotic network, and assembly of plastisphere protistan taxonomic and functional communities in plastic-mulching croplands <i>Journal of Hazardous Materials</i> , 2022 , 430, 128390	12.8	O
96	spp. Are Responsible for Nitrogen Fixation Fueled by As(III) Oxidation, a Novel Biogeochemical Process Identified in Mine Tailings <i>Environmental Science & Environmental Sc</i>	10.3	1
95	Characterizing sediment bacterial community and identifying the biological indicators in a seawater-freshwater transition zone during the wet and dry seasons <i>Environmental Science and Pollution Research</i> , 2022 , 1	5.1	2
94	Glomalin-related soil protein (GRSP) in metal sequestration at Pb/Zn-contaminated sites. <i>Journal of Soils and Sediments</i> , 2022 , 22, 577	3.4	0
93	Response of soil protozoa to acid mine drainage in a contaminated terrace. <i>Journal of Hazardous Materials</i> , 2022 , 421, 126790	12.8	9
92	Toxic effects of microplastics in plants depend more by their surface functional groups than just accumulation contents <i>Science of the Total Environment</i> , 2022 , 155097	10.2	1
91	Effects of perfluorooctanoic acid (PFOA) on activated sludge microbial community under aerobic and anaerobic conditions <i>Environmental Science and Pollution Research</i> , 2022 , 1	5.1	Ο
90	Microbial Transformations of Antimony. Advances in Environmental Microbiology, 2022, 223-254	1.3	Ο
89	Cooperation triggers nitrogen removal and algal inhibition by actinomycetes during landscape water treatment: Performance and metabolic activity <i>Bioresource Technology</i> , 2022 , 127313	11	Ο
88	Antimony reduction by a non-conventional sulfate reducer with simultaneous bioenergy production in microbial fuel cells. <i>Chemosphere</i> , 2021 , 291, 132754	8.4	0
87	Bacteria responsible for antimonite oxidation in antimony-contaminated soil revealed by DNA-SIP coupled to metagenomics. <i>FEMS Microbiology Ecology</i> , 2021 , 97,	4.3	4
86	Solar-driven, self-sustainable electrolysis for treating eutrophic river water: Intensified nutrient removal and reshaped microbial communities. <i>Science of the Total Environment</i> , 2021 , 764, 144293	10.2	2
85	Stable Isotope Probing Implicates Pseudomonas as the Methanogenic Toluene Degrader in Gasoline-Contaminated Soil. <i>Water, Air, and Soil Pollution</i> , 2021 , 232, 1	2.6	1
84	Bacteria responsible for nitrate-dependent antimonite oxidation in antimony-contaminated paddy soil revealed by the combination of DNA-SIP and metagenomics. <i>Soil Biology and Biochemistry</i> , 2021 , 156, 108194	7.5	8
83	Soil bacterial community functions and distribution after mining disturbance. <i>Soil Biology and Biochemistry</i> , 2021 , 157, 108232	7.5	8
82	Stable-isotope probing coupled with high-throughput sequencing reveals bacterial taxa capable of degrading aniline at three contaminated sites with contrasting pH. <i>Science of the Total Environment</i> , 2021 , 771, 144807	10.2	2
81	Metabolic potentials of members of the class Acidobacteriia in metal-contaminated soils revealed by metagenomic analysis. <i>Environmental Microbiology</i> , 2021 ,	5.2	9

(2021-2021)

80	Structure and variation of root-associated bacterial communities of Cyperus rotundus L. in the contaminated soils around Pb/Zn mine sites. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 58523-58535	5.1	4
79	Microbial community responses to land-use types and its ecological roles in mining area. <i>Science of the Total Environment</i> , 2021 , 775, 145753	10.2	5
78	Root-associated (rhizosphere and endosphere) microbiomes of the Miscanthus sinensis and their response to the heavy metal contamination. <i>Journal of Environmental Sciences</i> , 2021 , 104, 387-398	6.4	20
77	Investigation of the antimony fractions and indigenous microbiota in aerobic and anaerobic rice paddies. <i>Science of the Total Environment</i> , 2021 , 771, 145408	10.2	7
76	Efficient reduction of antimony by sulfate-reducer enriched bio-cathode with hydrogen production in a microbial electrolysis cell. <i>Science of the Total Environment</i> , 2021 , 774, 145733	10.2	8
75	Citric acid and AMF inoculation combination-assisted phytoextraction of vanadium (V) by Medicago sativa in V mining contaminated soil. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 67472-6748	\S^1	2
74	Effects of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonic Acid (PFOS) on Soil Microbial Community. <i>Microbial Ecology</i> , 2021 , 1	4.4	2
73	Root microbiome assembly of As-hyperaccumulator Pteris vittata and its efficacy in arsenic requisition. <i>Environmental Microbiology</i> , 2021 , 23, 1959-1971	5.2	8
72	Microbiome-environment interactions in antimony-contaminated rice paddies and the correlation of core microbiome with arsenic and antimony contamination. <i>Chemosphere</i> , 2021 , 263, 128227	8.4	23
71	Thallium shifts the bacterial and fungal community structures in thallium mine waste rocks. <i>Environmental Pollution</i> , 2021 , 268, 115834	9.3	7
70	Profiling of Microbial Communities in the Sediments of Jinsha River Watershed Exposed to Different Levels of Impacts by the Vanadium Industry, Panzhihua, China. <i>Microbial Ecology</i> , 2021 , 82, 623-637	4.4	5
69	Isolation and Identification of Uranium Tolerant Phosphate-Solubilizing spp. and Their Synergistic Strategies to U(VI) Immobilization. <i>Frontiers in Microbiology</i> , 2021 , 12, 676391	5.7	3
68	Synergistic Impacts of Arsenic and Antimony Co-contamination on Diazotrophic Communities. <i>Microbial Ecology</i> , 2021 , 1	4.4	2
67	Effects of antimony on anaerobic methane oxidization and microbial community in an antimony-contaminated paddy soil: A microcosm study. <i>Science of the Total Environment</i> , 2021 , 784, 147	199	10
66	Arsenic and antimony co-contamination influences on soil microbial community composition and functions: Relevance to arsenic resistance and carbon, nitrogen, and sulfur cycling. <i>Environment International</i> , 2021 , 153, 106522	12.9	21
65	Synergy between pyridine anaerobic mineralization and vanadium (V) oxyanion bio-reduction for aquifer remediation. <i>Journal of Hazardous Materials</i> , 2021 , 418, 126339	12.8	3
64	Identification of Antimonate Reducing Bacteria and Their Potential Metabolic Traits by the Combination of Stable Isotope Probing and Metagenomic-Pangenomic Analysis. <i>Environmental Science & Environmental Science & Environ</i>	10.3	6
63	Colloidal stability of nanosized activated carbon in aquatic systems: Effects of pH, electrolytes, and macromolecules. <i>Water Research</i> , 2021 , 203, 117561	12.5	3

62	Response and Dynamic Change of Microbial Community during Bioremediation of Uranium Tailings by Bacillus sp <i>Minerals (Basel, Switzerland)</i> , 2021 , 11, 967	2.4	4
61	Diversity and Metabolic Potentials of As(III)-Oxidizing Bacteria in Activated Sludge. <i>Applied and Environmental Microbiology</i> , 2021 , 87, e0176921	4.8	3
60	Variation in the diazotrophic community in a vertical soil profile contaminated with antimony and arsenic. <i>Environmental Pollution</i> , 2021 , 291, 118248	9.3	5
59	Characterization of Nitrate-Dependent As(III)-Oxidizing Communities in Arsenic-Contaminated Soil and Investigation of Their Metabolic Potentials by the Combination of DNA-Stable Isotope Probing and Metagenomics. <i>Environmental Science & Environmental Science & Environme</i>	10.3	28
58	Chemolithoautotropic Diazotrophy Dominates the Nitrogen Fixation Process in Mine Tailings. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	27
57	Energy and environmental impact assessment of a passive remediation bioreactor for antimony-rich mine drainage. <i>Environmental Science and Pollution Research</i> , 2020 , 27, 35040-35050	5.1	2
56	Bacterial response to sharp geochemical gradients caused by acid mine drainage intrusion in a terrace: Relevance of C, N, and S cycling and metal resistance. <i>Environment International</i> , 2020 , 138, 10	5 60 19	40
55	Uncovering microbial responses to sharp geochemical gradients in a terrace contaminated by acid mine drainage. <i>Environmental Pollution</i> , 2020 , 261, 114226	9.3	51
54	Comparative characterization of microbial communities that inhabit arsenic-rich and antimony-rich contaminated sites: Responses to two different contamination conditions. <i>Environmental Pollution</i> , 2020 , 260, 114052	9.3	19
53	Impacts of antimony and arsenic co-contamination on the river sedimentary microbial community in an antimony-contaminated river. <i>Science of the Total Environment</i> , 2020 , 713, 136451	10.2	35
52	Investigation of the Ecological Roles of Putative Keystone Taxa during Tailing Revegetation. <i>Environmental Science & Environmental Science & Environm</i>	10.3	24
51	V Reduction by spp. in Vanadium Mine Tailings. <i>Environmental Science & Environmental Science & Enviro</i>	42134	54 5
50	Microbial adaptation in vertical soil profiles contaminated by an antimony smelting plant. <i>FEMS Microbiology Ecology</i> , 2020 , 96,	4.3	9
49	Vegetation type impacts microbial interaction with antimony contaminants in a mining-contaminated soil environment. <i>Environmental Pollution</i> , 2019 , 252, 1872-1881	9.3	18
48	Bacterial response to antimony and arsenic contamination in rice paddies during different flooding conditions. <i>Science of the Total Environment</i> , 2019 , 675, 273-285	10.2	34
47	Comparative Analyses of the Microbial Communities Inhabiting Coal Mining Waste Dump and an Adjacent Acid Mine Drainage Creek. <i>Microbial Ecology</i> , 2019 , 78, 651-664	4.4	17
46	Impacts of Arsenic and Antimony Co-Contamination on Sedimentary Microbial Communities in Rivers with Different Pollution Gradients. <i>Microbial Ecology</i> , 2019 , 78, 589-602	4.4	26
45	Characterization of iron-metabolizing communities in soils contaminated by acid mine drainage from an abandoned coal mine in Southwest China. <i>Environmental Science and Pollution Research</i> , 2019 , 26, 9585-9598	5.1	17

(2016-2019)

44	Variation in rhizosphere microbiota correlates with edaphic factor in an abandoned antimony tailing dump. <i>Environmental Pollution</i> , 2019 , 253, 141-151	9.3	25	
43	Identification of a Chlorodibenzodioxin Dechlorinating by Stable Isotope Probing. <i>Environmental Science & Environmental Sci</i>	10.3	4	
42	Acid mine drainage affects the diversity and metal resistance gene profile of sediment bacterial community along a river. <i>Chemosphere</i> , 2019 , 217, 790-799	8.4	48	
41	A Combination of Stable Isotope Probing, Illumina Sequencing, and Co-occurrence Network to Investigate Thermophilic Acetate- and Lactate-Utilizing Bacteria. <i>Microbial Ecology</i> , 2018 , 75, 113-122	4.4	24	
40	Paddy soil microbial communities driven by environment- and microbe-microbe interactions: A case study of elevation-resolved microbial communities in a rice terrace. <i>Science of the Total Environment</i> , 2018 , 612, 884-893	10.2	41	
39	DNA-SIP Reveals the Diversity of Chemolithoautotrophic Bacteria Inhabiting Three Different Soil Types in Typical Karst Rocky Desertification Ecosystems in Southwest China. <i>Microbial Ecology</i> , 2018 , 76, 976-990	4.4	9	
38	Microbial iron reduction as a method for immobilization of a low concentration of dissolved cadmium. <i>Journal of Environmental Management</i> , 2018 , 217, 747-753	7.9	11	
37	Rhizosphere Microbial Response to Multiple Metal(loid)s in Different Contaminated Arable Soils Indicates Crop-Specific Metal-Microbe Interactions. <i>Applied and Environmental Microbiology</i> , 2018 , 84,	4.8	30	
36	Bacterial Survival Strategies in an Alkaline Tailing Site and the Physiological Mechanisms of Dominant Phylotypes As Revealed by Metagenomic Analyses. <i>Environmental Science & Environmental Science & Technology</i> , 2018 , 52, 13370-13380	10.3	54	
35	Depth-resolved microbial community analyses in two contrasting soil cores contaminated by antimony and arsenic. <i>Environmental Pollution</i> , 2017 , 221, 244-255	9.3	51	
34	Effects of Cd on reductive transformation of lepidocrocite by Shewanella oneidensis MR-1. <i>Acta Geochimica</i> , 2017 , 36, 479-481	2.2	1	
33	Response of Soil Microbial Communities to Elevated Antimony and Arsenic Contamination Indicates the Relationship between the Innate Microbiota and Contaminant Fractions. <i>Environmental Science & Environmental Science</i>	10.3	87	
32	Remediation of antimony-rich mine waters: Assessment of antimony removal and shifts in the microbial community of an onsite field-scale bioreactor. <i>Environmental Pollution</i> , 2016 , 215, 213-222	9.3	26	
31	Characterization of the microbial community composition and the distribution of Fe-metabolizing bacteria in a creek contaminated by acid mine drainage. <i>Applied Microbiology and Biotechnology</i> , 2016 , 100, 8523-35	5.7	32	
30	Correlating microbial community compositions with environmental factors in activated sludge from four full-scale municipal wastewater treatment plants in Shanghai, China. <i>Applied Microbiology and Biotechnology</i> , 2016 , 100, 4663-73	5.7	94	
29	Profiling microbial community in a watershed heavily contaminated by an active antimony (Sb) mine in Southwest China. <i>Science of the Total Environment</i> , 2016 , 550, 297-308	10.2	82	
28	Identification of a Ruminococcaceae Species as the Methyl tert-Butyl Ether (MTBE) Degrading Bacterium in a Methanogenic Consortium. <i>Environmental Science & Environmental Sci</i>	10.3	18	
27	Correlating microbial community profiles with geochemical conditions in a watershed heavily contaminated by an antimony tailing pond. <i>Environmental Pollution</i> , 2016 , 215, 141-153	9.3	38	

26	Microbial diversity and community structure in an antimony-rich tailings dump. <i>Applied Microbiology and Biotechnology</i> , 2016 , 100, 7751-63	5.7	42
25	Variation of nonylphenol-degrading gene abundance and bacterial community structure in bioaugmented sediment microcosm. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 2342-9	5.1	9
24	Profiling microbial community structures across six large oilfields in China and the potential role of dominant microorganisms in bioremediation. <i>Applied Microbiology and Biotechnology</i> , 2015 , 99, 8751-64	.5.7	27
23	From mesophilic to thermophilic digestion: the transitions of anaerobic bacterial, archaeal, and fungal community structures in sludge and manure samples. <i>Applied Microbiology and Biotechnology</i> , 2015 , 99, 10271-82	5.7	28
22	Diversity of the Sediment Microbial Community in the Aha Watershed (Southwest China) in Response to Acid Mine Drainage Pollution Gradients. <i>Applied and Environmental Microbiology</i> , 2015 , 81, 4874-84	4.8	57
21	Identification of Anaerobic Aniline-Degrading Bacteria at a Contaminated Industrial Site. <i>Environmental Science & Environmental Science & Environment</i>	10.3	45
20	Microbial community analysis in rice paddy soils irrigated by acid mine drainage contaminated water. <i>Applied Microbiology and Biotechnology</i> , 2015 , 99, 2911-22	5.7	92
19	Anaerobic Degradation of Aromatic Compounds 2015 , 5.1.3-1-5.1.3-14		O
18	Isolation and Characterization of an Erythromycin-Degrading Strain and Application for Bioaugmentation in a Biological Aerated Filter. <i>Water, Air, and Soil Pollution</i> , 2015 , 226, 1	2.6	3
17	Microbial communities inhabiting oil-contaminated soils from two major oilfields in Northern China: Implications for active petroleum-degrading capacity. <i>Journal of Microbiology</i> , 2015 , 53, 371-8	3	27
16	Impacts of coexisting antibiotics, antibacterial residues, and heavy metals on the occurrence of erythromycin resistance genes in urban wastewater. <i>Applied Microbiology and Biotechnology</i> , 2015 , 99, 3971-80	5.7	79
15	Simazine biodegradation and community structures of ammonia-oxidizing microorganisms in bioaugmented soil: impact of ammonia and nitrate nitrogen sources. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 3175-81	5.1	17
14	Presence, diversity and enumeration of functional genes (bssA and bamA) relating to toluene degradation across a range of redox conditions and inoculum sources. <i>Biodegradation</i> , 2014 , 25, 189-203	3 ^{4.1}	42
13	Nonylphenol biodegradation in river sediment and associated shifts in community structures of bacteria and ammonia-oxidizing microorganisms. <i>Ecotoxicology and Environmental Safety</i> , 2014 , 106, 1-5	7	39
12	Biodegradation of nonylphenol by two alphaproteobacterial strains in liquid culture and sediment microcosm. <i>International Biodeterioration and Biodegradation</i> , 2014 , 92, 1-5	4.8	21
11	Phanerochaete chrysosporium inoculation shapes the indigenous fungal communities during agricultural waste composting. <i>Biodegradation</i> , 2014 , 25, 669-80	4.1	18
10	Identification of Desulfosporosinus as toluene-assimilating microorganisms from a methanogenic consortium. <i>International Biodeterioration and Biodegradation</i> , 2014 , 88, 13-19	4.8	44
9	Bacteria diversity, distribution and insight into their role in S and Fe biogeochemical cycling during black shale weathering. <i>Environmental Microbiology</i> , 2014 , 16, 3533-47	5.2	29

LIST OF PUBLICATIONS

8	Biosorption of Chromium(VI) Ions by Deposits Produced from Chicken Feathers after Soluble Keratin Extraction. <i>Clean - Soil, Air, Water</i> , 2014 , 42, 1558-1566	1.6	15
7	Diversity of five anaerobic toluene-degrading microbial communities investigated using stable isotope probing. <i>Applied and Environmental Microbiology</i> , 2012 , 78, 972-80	4.8	81
6	Anaerobic methyl tert-butyl ether-degrading microorganisms identified in wastewater treatment plant samples by stable isotope probing. <i>Applied and Environmental Microbiology</i> , 2012 , 78, 2973-80	4.8	36
5	Novel aerobic benzene degrading microorganisms identified in three soils by stable isotope probing. <i>Biodegradation</i> , 2011 , 22, 71-81	4.1	63
4	Direct link between toluene degradation in contaminated-site microcosms and a Polaromonas strain. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 956-9	4.8	45
3	Stable Isotope Probing Identifies Novel m-Xylene Degraders in Soil Microcosms from Contaminated and Uncontaminated Sites. <i>Water, Air, and Soil Pollution</i> , 2010 , 212, 113-122	2.6	28
2	Identification of a novel toluene-degrading bacterium from the candidate phylum TM7, as determined by DNA stable isotope probing. <i>Applied and Environmental Microbiology</i> , 2009 , 75, 4644-7	4.8	66
1	Hydrophobic organic chemicals (HOCs) removal from biologically treated landfill leachate by powder-activated carbon (PAC), granular-activated carbon (GAC) and biomimetic fat cell (BFC). <i>Journal of Hazardous Materials</i> , 2009 , 163, 1084-9	12.8	29