Nikos Deligiannis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2060101/publications.pdf

Version: 2024-02-01

123 papers 1,519 citations

489802 18 h-index 488211 31 g-index

126 all docs

126
docs citations

times ranked

126

1570 citing authors

#	Article	IF	CITATIONS
1	Learned Gradient Compression for Distributed Deep Learning. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 7330-7344.	7.2	18
2	Spatiotemporal air quality inference of low-cost sensor data: Evidence from multiple sensor testbeds. Environmental Modelling and Software, 2022, 149, 105306.	1.9	15
3	Fine-Grained Urban Air Quality Mapping from Sparse Mobile Air Pollution Measurements and Dense Traffic Density. Remote Sensing, 2022, 14, 2613.	1.8	6
4	Explaining Graph Neural Networks With Topology-Aware Node Selection: Application in Air Quality Inference. IEEE Transactions on Signal and Information Processing Over Networks, 2022, 8, 499-513.	1.6	2
5	Context-Aware Deep Markov Random Fields for Fake News Detection. IEEE Access, 2021, 9, 130042-130054.	2.6	8
6	Interpretable Deep Learning forÂMultimodal Super-Resolution ofÂMedical Images. Lecture Notes in Computer Science, 2021, , 421-429.	1.0	5
7	A Deep-Unfolded Reference-Based RPCA Network For Video Foreground-Background Separation. , 2021, ,		6
8	HCGM-Net: A Deep Unfolding Network for Financial Index Tracking. , 2021, , .		0
9	Graph convolutional neural networks with node transition probability-based message passing and DropNode regularization. Expert Systems With Applications, 2021, 174, 114711.	4.4	15
10	Spatiotemporal Air Quality Inference of Low-Cost Sensor Data; Application on a Cycling Monitoring Network. Lecture Notes in Computer Science, 2021, , 139-147.	1.0	1
11	Designing Interpretable Recurrent Neural Networks for Video Reconstruction via Deep Unfolding. IEEE Transactions on Image Processing, 2021, 30, 4099-4113.	6.0	10
12	A Robust Deep Unfolded Network for Sparse Signal Recovery from Noisy Binary Measurements. , 2021, , .		3
13	Designing CNNs for Multimodal Image Super-Resolution via the Method of Multipliers. , 2021, , .		1
14	Multimodal Image Super-Resolution via Joint Sparse Representations Induced by Coupled Dictionaries. IEEE Transactions on Computational Imaging, 2020, 6, 57-72.	2.6	42
15	Geometric Matrix Completion With Deep Conditional Random Fields. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31, 3579-3593.	7.2	12
16	Joint Image Super-Resolution Via Recurrent Convolutional Neural Networks With Coupled Sparse Priors. , 2020, , .		3
17	Multimodal Deep Unfolding for Guided Image Super-Resolution. IEEE Transactions on Image Processing, 2020, 29, 8443-8456.	6.0	28
18	Graph Auto-Encoder for Graph Signal Denoising. , 2020, , .		10

#	Article	IF	CITATIONS
19	Graph-Deep-Learning-Based Inference of Fine-Grained Air Quality From Mobile IoT Sensors. IEEE Internet of Things Journal, 2020, 7, 8943-8955.	5.5	25
20	DeepFPC: A deep unfolded network for sparse signal recovery from 1-Bit measurements with application to DOA estimation. Signal Processing, 2020, 176, 107699.	2.1	22
21	Mapping Air Quality in IoT Cities: Cloud Calibration and Air Quality Inference of Sensor Data. , 2020, , .		7
22	On the energy self-sustainability of IoT via distributed compressed sensing. China Communications, 2020, 17, 37-51.	2.0	1
23	Matrix Completion with Variational Graph Autoencoders: Application in Hyperlocal Air Quality Inference. , $2019, , .$		12
24	Rumour Detection Via News Propagation Dynamics and User Representation Learning., 2019,,.		9
25	Learned Multimodal Convolutional Sparse Coding for Guided Image Super-Resolution. , 2019, , .		6
26	Online Sequential Compressed Sensing With Multiple Information for Through-the-Wall Radar Imaging. IEEE Sensors Journal, 2019, 19, 4138-4148.	2.4	9
27	Multimodal Image Super-resolution via Deep Unfolding with Side Information. , 2019, , .		11
28	Visualization of Real-Time Heterogeneous Smart City Data Using Virtual Reality. , 2019, , .		11
29	Automatic Multi-Camera Extrinsic Parameter Calibration Based on Pedestrian Torsors â€. Sensors, 2019, 19, 4989.	2.1	3
30	Designing Recurrent Neural Networks by Unfolding an L1-L1 Minimization Algorithm., 2019,,.		7
31	Deep Coupled-Representation Learning for Sparse Linear Inverse Problems With Side Information. IEEE Signal Processing Letters, 2019, 26, 1768-1772.	2.1	17
32	Automatic Extrinsic Calibration of Camera Networks Based on Pedestrians., 2019,,.		2
33	Learning Discrete Matrix Factorization Models. IEEE Signal Processing Letters, 2018, 25, 720-724.	2.1	7
34	Compressive Online Robust Principal Component Analysis via <inline-formula> <tex-math notation="LaTeX">\$n\$ </tex-math> </inline-formula> - <inline-formula> <tex-math notation="LaTeX">\$ell_1\$ </tex-math> </inline-formula> Minimization. IEEE Transactions on Image Processing, 2018, 27, 4314-4329.	6.0	15
35	Twitter data analysis for studying communities of practice in the media industry. Telematics and Informatics, 2018, 35, 195-212.	3.5	25
36	Regularizing Autoencoder-Based Matrix Completion Models via Manifold Learning. , 2018, , .		3

3

#	Article	IF	Citations
37	Extendable Neural Matrix Completion. , 2018, , .		13
38	Twitter User Geolocation Using Deep Multiview Learning. , 2018, , .		17
39	Compressive Online Decomposition of Dynamic Signals Via N-â,, "1 Minimization With Clustered Priors. , 2018, , .		O
40	Sparse signal recovery with multiple prior information: Algorithm and measurement bounds. Signal Processing, 2018, 152, 417-428.	2.1	3
41	Random Subsampling and Data Preconditioning for Ground Penetrating Radars. IEEE Access, 2018, 6, 26866-26880.	2.6	7
42	Online Decomposition of Compressive Streaming Data Using n-l1 Cluster-Weighted Minimization. , 2018, , .		2
43	Compressed Sensing mm-Wave SAR for Non-Destructive Testing Applications Using Multiple Weighted Side Information. Sensors, 2018, 18, 1761.	2.1	3
44	Data aggregation and recovery for the Internet of Things: A compressive demixing approach., 2018,,.		4
45	Compressed Sensing With Prior Information: Strategies, Geometry, and Bounds. IEEE Transactions on Information Theory, 2017, 63, 4472-4496.	1.5	124
46	Heterogeneous Networked Data Recovery From Compressive Measurements Using a Copula Prior. IEEE Transactions on Communications, 2017, 65, 5333-5347.	4.9	13
47	Review and Classification of Multichannel MAC Protocols for Low-Power and Lossy Networks. IEEE Access, 2017, 5, 19536-19561.	2.6	18
48	Rate-distortion trade-offs in acquisition of signal parameters. , 2017, , .		10
49	Multi-Modal Dictionary Learning for Image Separation With Application in Art Investigation. IEEE Transactions on Image Processing, 2017, 26, 751-764.	6.0	27
50	Multiterminal Source Coding With Copula Regression for Wireless Sensor Networks Gathering Diverse Data. IEEE Sensors Journal, 2017, 17, 139-150.	2.4	18
51	Bounds and Conditions for Compressive Digital Holography Using Wavelet Sparsifying Bases. IEEE Transactions on Computational Imaging, 2017, 3, 592-604.	2.6	5
52	Compressive online robust principal component analysis with multiple prior information., 2017,,.		3
53	Deep learning sparse ternary projections for compressed sensing of images. , 2017, , .		19
54	Hourglass-ShapeNetwork Based Semantic Segmentation for High Resolution Aerial Imagery. Remote Sensing, 2017, 9, 522.	1.8	110

#	Article	IF	Citations
55	A Review of Urban Air Pollution Monitoring and Exposure Assessment Methods. ISPRS International Journal of Geo-Information, 2017, 6, 389.	1.4	109
56	A framework for learning affine transformations for multimodal sparse reconstruction. , 2017, , .		1
57	Internet-of-Things data aggregation using compressed sensing with side information. , 2016, , .		10
58	Coupled dictionary learning for multimodal image super-resolution. , 2016, , .		8
59	Bayesian Compressed Sensing with Heterogeneous Side Information. , 2016, , .		7
60	The Rate Loss in Binary Source Coding with Decoder Side Information. , 2016, , .		0
61	On the Rate-Distortion Function for Binary Source Coding With Side Information. IEEE Transactions on Communications, 2016, 64, 5203-5216.	4.9	4
62	Distributed coding of multiview sparse sources with joint recovery. , 2016, , .		0
63	Compressed sensing and defect-based dictionaries for characteristics extraction in mm-Wave non-destructive testing. , 2016, , .		1
64	Adaptive-Rate Reconstruction of Time-Varying Signals With Application in Compressive Foreground Extraction. IEEE Transactions on Signal Processing, 2016, 64, 3651-3666.	3.2	24
65	Real-time distributed video coding for 1K-pixel visual sensor networks. Journal of Electronic Imaging, 2016, 25, 041008.	0.5	5
66	Achievability of the rate-distortion function in binary uniform source coding with side information., $2016,$		1
67	Twitter data clustering and visualization. , 2016, , .		15
68	Compressed sensing mm-wave SAR for non-destructive testing applications using side information. , 2016, , .		4
69	Measurement matrix design for compressive sensing with side information at the encoder., 2016,,.		7
70	X-ray image separation via coupled dictionary learning. , 2016, , .		8
71	Reference-based compressed sensing: A sample complexity approach. , 2016, , .		14
72	Decentralized Time-Synchronized Channel Swapping for Ad Hoc Wireless Networks. IEEE Transactions on Vehicular Technology, 2016, 65, 8538-8553.	3.9	64

#	Article	IF	Citations
73	Convergence of Desynchronization Primitives in Wireless Sensor Networks: A Stochastic Modeling Approach. IEEE Transactions on Signal Processing, 2015, 63, 221-233.	3.2	20
74	Perceptual video quality estimation by regression with myopic experts., 2015,,.		3
75	Binary rate distortion with side information: The asymmetric correlation channel case., 2015,,.		3
76	Distributed Joint Source-Channel Coding With Copula-Function-Based Correlation Modeling for Wireless Sensors Measuring Temperature. IEEE Sensors Journal, 2015, 15, 4496-4507.	2.4	17
77	Dynamic sparse state estimation using $\#x2113$; $\inf 1< \inf 4$, $\inf 1< \inf 7$, $\inf 1< \inf 7$, $\inf 1< \inf 7$, and applications. The space of the state of the space of the spa		14
78	Decentralized time-synchronized channel swapping., 2015,,.		1
79	Decentralized multichannel medium access control. , 2015, , .		9
80	Real-time distributed video coding simulator for 1K-pixel visual sensor. , 2015, , .		1
81	Vectors of locally aggregated centers for compact video representation. , 2015, , .		6
82	Fast Desynchronization for Decentralized Multichannel Medium Access Control. IEEE Transactions on Communications, 2015, 63, 3336-3349.	4.9	13
83	Compressed sensing with side information: Geometrical interpretation and performance bounds. , 2014, , .		31
84	On the stochastic modeling of desynchronization convergence in wireless sensor networks. , 2014, , .		3
85	Progressively refined wyner-ziv video coding for visual sensors. ACM Transactions on Sensor Networks, 2014, 10, 1-34.	2.3	12
86	The No-Rate-Loss Property of Wyner-Ziv Coding in the Z-Channel Correlation Case. IEEE Communications Letters, 2014, 18, 1675-1678.	2.5	13
87	Maximum Likelihood Laplacian Correlation Channel Estimation in Layered Wyner-Ziv Coding. IEEE Transactions on Signal Processing, 2014, 62, 892-904.	3.2	20
88	Dynamic Scheduling for Energy Minimization in Delay-Sensitive Stream Mining. IEEE Transactions on Signal Processing, 2014, 62, 5439-5448.	3.2	10
89	Performance of complex orthogonal M-ary transmission with Amicable Hadamard matrices over diversity Rayleigh fading channels. , 2013, , .		0
90	Efficient intra-frame video coding for low resolution wireless visual sensors. , 2013, , .		4

#	Article	IF	Citations
91	Transform-domain Wyner-Ziv video coding for 1K-pixel visual sensors. , 2013, , .		7
92	Probabilistic motion-compensated prediction in distributed video coding. Multimedia Tools and Applications, 2013, 66, 405-430.	2.6	5
93	Demo: intra-frame compression for 1K-pixel visual sensors. , 2013, , .		2
94	Genome Sequence Compression with Distributed Source Coding., 2013,,.		2
95	Encoder-driven rate control and mode decision for distributed video coding. Eurasip Journal on Advances in Signal Processing, 2013, 2013, .	1.0	10
96	Symmetric Scalable Multiple Description Scalar Quantization. IEEE Transactions on Signal Processing, 2012, 60, 3628-3643.	3.2	4
97	Iterative Wyner-Ziv decoding and successive side-information refinement in feedback channel-free hash-based distributed video coding. Proceedings of SPIE, 2012, , .	0.8	2
98	Feedback-constrained Wyner-Ziv video coding. , 2012, , .		0
99	Wyner-Ziv video coding for wireless lightweight multimedia applications. Eurasip Journal on Wireless Communications and Networking, 2012, 2012, .	1.5	23
100	Efficient Low-Delay Distributed Video Coding. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22, 530-544.	5.6	19
101	Distributed Video Coding With Feedback Channel Constraints. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22, 1014-1026.	5.6	11
102	Maximum likelihood motion compensation for distributed video coding. Integrated Computer-Aided Engineering, 2012, 19, 215-227.	2.5	4
103	Decoder-driven mode decision in a block-based distributed video codec. Multimedia Tools and Applications, 2012, 58, 239-266.	2.6	11
104	Side-Information-Dependent Correlation Channel Estimation in Hash-Based Distributed Video Coding. IEEE Transactions on Image Processing, 2012, 21, 1934-1949.	6.0	35
105	Joint DC coefficient band decoding and motion estimation in Wyner-Ziv video coding. , 2011, , .		5
106	A probabilistic predictor for side information generation in distributed video coding., 2011,,.		2
107	Distributed coding of endoscopic video. , 2011, , .		15
108	A statistical approach to create side information in distributed video coding. , 2011, , .		4

#	Article	IF	Citations
109	Efficient hash-driven Wyner-Ziv video coding for visual sensors. , 2011, , .		5
110	Demo: Distributed video coding applications in wireless multimedia sensor networks. , 2011, , .		2
111	Intra-WZ quantization mismatch in distributed video coding., 2011,,.		2
112	Exploiting quantization and spatial correlation in virtual-noise modeling for distributed video coding. Signal Processing: Image Communication, 2010, 25, 674-686.	1.8	13
113	Hybrid TOA–AOA Location Positioning Techniques in GSM Networks. Wireless Personal Communications, 2010, 54, 321-348.	1.8	13
114	Rate-distortion driven decoder-side bitplane mode decision for distributed video coding. Signal Processing: Image Communication, 2010, 25, 660-673.	1.8	20
115	Bitplane intra coding with decoder-side mode decision in distributed video coding. , 2010, , .		3
116	Correlation modeling with decoder-side quantization distortion estimation for distributed video coding. , 2010 , , .		2
117	Compensating for Motion Estimation Inaccuracies in DVC. Lecture Notes in Computer Science, 2010, , 324-332.	1.0	0
118	Modeling the Correlation Noise in Spatial Domain Distributed Video Coding., 2009,,.		7
119	On the side-information dependency of the temporal correlation in Wyner-Ziv video coding., 2009,,.		8
120	Overlapped Block Motion Estimation and Probabilistic Compensation with Application in Distributed Video Coding. IEEE Signal Processing Letters, 2009, 16, 743-746.	2.1	26
121	Spatial-domain unidirectional DVC with side-information dependent correlation channel estimation. , 2009, , .		5
122	Correlation channel estimation in pixel-domain distributed video coding. , 2009, , .		5
123	Optimizing Location Positioning Using Hybrid TOA-AOA Techniques in Mobile Cellular Networks. , 2007, , .		6