
Laura Calabresi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/20594/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cardiovascular Status of Carriers of the Apolipoprotein A-I _{Milano} Mutant. Circulation, 2001, 103, 1949-1954.	1.6	322
2	Endothelial Protection by High-Density Lipoproteins. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1724-1731.	1.1	229
3	Enzymatically Active Paraoxonase-1 Is Located at the External Membrane of Producing Cells and Released by a High Affinity, Saturable, Desorption Mechanism. Journal of Biological Chemistry, 2002, 277, 4301-4308.	1.6	211
4	Structure of HDL: Particle Subclasses and Molecular Components. Handbook of Experimental Pharmacology, 2015, 224, 3-51.	0.9	184
5	HDL and cholesterol handling in the brain. Cardiovascular Research, 2014, 103, 405-413.	1.8	172
6	Triglycerides Are Major Determinants of Cholesterol Esterification/Transfer and HDL Remodeling in Human Plasma. Arteriosclerosis, Thrombosis, and Vascular Biology, 1995, 15, 1819-1828.	1.1	165
7	The Molecular Basis of Lecithin:Cholesterol Acyltransferase Deficiency Syndromes. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1972-1978.	1.1	158
8	Role of LCAT in HDL remodeling: investigation of LCAT deficiency states. Journal of Lipid Research, 2007, 48, 592-599.	2.0	156
9	Gene dose of the ?4 allele of apolipoprotein E and disease progression in sporadic late-onset alzheimer's disease. Annals of Neurology, 1995, 37, 596-604.	2.8	153
10	Intestinal Specific LXR Activation Stimulates Reverse Cholesterol Transport and Protects from Atherosclerosis. Cell Metabolism, 2010, 12, 187-193.	7.2	151
11	Inhibition of VCAM-1 Expression in Endothelial Cells by Reconstituted High Density Lipoproteins. Biochemical and Biophysical Research Communications, 1997, 238, 61-65.	1.0	150
12	High-Density Lipoproteins Protect Isolated Rat Hearts From Ischemia-Reperfusion Injury by Reducing Cardiac Tumor Necrosis Factor-α Content and Enhancing Prostaglandin Release. Circulation Research, 2003, 92, 330-337.	2.0	136
13	Elevated Soluble Cellular Adhesion Molecules in Subjects With Low HDL-Cholesterol. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 656-661.	1.1	133
14	Structure, function and amyloidogenic propensity of apolipoprotein A-I. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2006, 13, 191-205.	1.4	124
15	Small Discoidal Pre-β1 HDL Particles Are Efficient Acceptors of Cell Cholesterol via ABCA1 and ABCG1. Biochemistry, 2009, 48, 11067-11074.	1.2	120
16	An ω-3 polyunsaturated fatty acid concentrate increases plasma high-density lipoprotein 2 cholesterol and paraoxonase levels in patients with familial combined hyperlipidemia. Metabolism: Clinical and Experimental, 2004, 53, 153-158.	1.5	117
17	Characterization of Three Kindreds With Familial Combined Hypolipidemia Caused by Loss-of-Function Mutations of ANGPTL3. Circulation: Cardiovascular Genetics, 2012, 5, 42-50.	5.1	115
18	Increased Cholesterol Efflux Potential of Sera From ApoA-I _{Milano} Carriers and Transgenic Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 1257-1262.	1.1	114

#	Article	IF	CITATIONS
19	Rare dyslipidaemias, from phenotype to genotype to management: a European Atherosclerosis Society task force consensus statement. Lancet Diabetes and Endocrinology,the, 2020, 8, 50-67.	5.5	114
20	Depletion of Pre-β-high Density Lipoprotein by Human Chymase Impairs ATP-binding Cassette Transporter A1- but Not Scavenger Receptor Class B Type I-mediated Lipid Efflux to High Density Lipoprotein. Journal of Biological Chemistry, 2004, 279, 9930-9936.	1.6	112
21	Genetic lecithin:cholesterol acyltransferase deficiency and cardiovascular disease. Atherosclerosis, 2012, 222, 299-306.	0.4	97
22	Omacor in familial combined hyperlipidemia: effects on lipids and low density lipoprotein subclasses. Atherosclerosis, 2000, 148, 387-396.	0.4	96
23	Functional Lecithin: Cholesterol Acyltransferase Is Not Required for Efficient Atheroprotection in Humans. Circulation, 2009, 120, 628-635.	1.6	94
24	Lecithin:Cholesterol Acyltransferase, High-Density Lipoproteins, and Atheroprotection in Humans. Trends in Cardiovascular Medicine, 2010, 20, 50-53.	2.3	82
25	Apolipoprotein A-I conformation in discoidal particles: Evidence for alternate structures. Biochemistry, 1993, 32, 6477-6484.	1.2	80
26	Hypocholesterolaemic effects of lupin protein and pea protein/fibre combinations in moderately hypercholesterolaemic individuals. British Journal of Nutrition, 2012, 107, 1176-1183.	1.2	77
27	Functional LCAT is not required for macrophage cholesterol efflux to human serum. Atherosclerosis, 2009, 204, 141-146.	0.4	75
28	Nutraceutical approach to moderate cardiometabolic risk: Results of a randomized, double-blind and crossover study with Armolipid Plus. Journal of Clinical Lipidology, 2014, 8, 61-68.	0.6	74
29	Tolerability of statins is not linked to CYP450 polymorphisms, but reduced CYP2D6 metabolism improves cholesteraemic response to simvastatin and fluvastatin. Pharmacological Research, 2007, 55, 310-317.	3.1	71
30	Omega-3 fatty acid ethyl esters increase heart rate variability in patients with coronary disease. Pharmacological Research, 2002, 45, 475-478.	3.1	70
31	Liver biopsy discloses a new apolipoprotein A-I hereditary amyloidosis in several unrelated Italian families. Gastroenterology, 2004, 126, 1416-1422.	0.6	70
32	A Unique Protease-sensitive High Density Lipoprotein Particle Containing the Apolipoprotein A-IMilano Dimer Effectively Promotes ATP-binding Cassette A1-mediated Cell Cholesterol Efflux. Journal of Biological Chemistry, 2007, 282, 5125-5132.	1.6	68
33	Effects of fenofibrate and simvastatin on HDL-related biomarkers in low-HDL patients. Atherosclerosis, 2007, 195, 385-391.	0.4	66
34	Functional Lecithin: Cholesterol Acyltransferase Is Not Required for Efficient Atheroprotection in Humans. Circulation, 2009, 120, 628-635.	1.6	63
35	Lipoprotein X Causes Renal Disease in LCAT Deficiency. PLoS ONE, 2016, 11, e0150083.	1.1	61
36	Reconstituted High-Density Lipoproteins with a Disulfide-Linked Apolipoprotein A-I Dimer:Â Evidence for Restricted Particle Size Heterogeneity. Biochemistry, 1997, 36, 12428-12433.	1.2	60

#	Article	IF	CITATIONS
37	Modulated serum activities and concentrations of paraoxonase in high density lipoprotein deficiency states. Atherosclerosis, 1998, 139, 77-82.	0.4	60
38	Macrophage, But Not Systemic, Apolipoprotein E ls Necessary for Macrophage Reverse Cholesterol Transport In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 74-80.	1.1	60
39	Role of LCAT in Atherosclerosis. Journal of Atherosclerosis and Thrombosis, 2016, 23, 119-127.	0.9	58
40	Acquired lecithin:cholesterol acyltransferase deficiency as a major factor in lowering plasma <scp>HDL</scp> levels in chronic kidney disease. Journal of Internal Medicine, 2015, 277, 552-561.	2.7	57
41	Cell Cholesterol Efflux to Reconstituted High-Density Lipoproteins Containing the Apolipoprotein A-IMilanoDimer. Biochemistry, 1999, 38, 16307-16314.	1.2	56
42	HDL and atherosclerosis: Insights from inherited HDL disorders. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 13-18.	1.2	56
43	Efficacy of Lomitapide in the Treatment of Familial Homozygous Hypercholesterolemia: Results of a Real-World Clinical Experience in Italy. Advances in Therapy, 2017, 34, 1200-1210.	1.3	56
44	Complete and Partial Lecithin:Cholesterol Acyltransferase Deficiency Is Differentially Associated With Atherosclerosis. Circulation, 2018, 138, 1000-1007.	1.6	56
45	Anti-Inflammatory and Cardioprotective Activities of Synthetic High-Density Lipoprotein Containing Apolipoprotein A-I Mimetic Peptides. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 776-783.	1.3	55
46	High density lipoprotein and coronary heart disease: insights from mutations leading to low high density lipoprotein. Current Opinion in Lipidology, 1997, 8, 219-224.	1.2	54
47	The LXR agonist T0901317 promotes the reverse cholesterol transport from macrophages by increasing plasma efflux potential. Journal of Lipid Research, 2008, 49, 954-960.	2.0	54
48	Mast Cell Chymase Degrades ApoE and ApoA-II in ApoA-l–Knockout Mouse Plasma and Reduces Its Ability to Promote Cellular Cholesterol Efflux. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 1475-1481.	1.1	53
49	Recombinant apolipoproteins for the treatment of vascular diseases. Atherosclerosis, 1999, 142, 29-40.	0.4	51
50	Inflammation impairs eNOS activation by HDL in patients with acute coronary syndrome. Cardiovascular Research, 2013, 100, 36-43.	1.8	49
51	Effect of soy on metabolic syndrome and cardiovascular risk factors: a randomized controlled trial. European Journal of Nutrition, 2018, 57, 499-511.	1.8	49
52	Synthetic High-Density Lipoproteins Exert Cardioprotective Effects in Myocardial Ischemia/Reperfusion Injury. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 79-84.	1.3	48
53	Recombinant apolipoprotein A-IMilano for the treatment of cardiovascular diseases. Current Atherosclerosis Reports, 2006, 8, 163-167.	2.0	48
54	Apolipoprotein E Îμ4 Allele in Alzheimer's Disease and Vascular Dementia. Dementia and Geriatric Cognitive Disorders, 1994, 5, 240-242.	0.7	47

#	Article	IF	CITATIONS
55	Activation of Lecithin Cholesterol Acyltransferase by a Disulfide-Linked Apolipoprotein A-I Dimer. Biochemical and Biophysical Research Communications, 1997, 232, 345-349.	1.0	46
56	Plasma cholesterol homeostasis, HDL remodeling and function during the acute phase reaction. Journal of Lipid Research, 2017, 58, 2051-2060.	2.0	44
57	Pharmacokinetic interactions between omeprazole/pantoprazole and clarithromycin in healthy volunteers. Pharmacological Research, 2004, 49, 493-499.	3.1	43
58	High-density lipoproteins attenuate interleukin-6 production in endothelial cells exposed to pro-inflammatory stimuli. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1736, 136-143.	1.2	43
59	Plasma lecithin:cholesterol acyltransferase and carotid intima-media thickness in European individuals at high cardiovascular risk. Journal of Lipid Research, 2011, 52, 1569-1574.	2.0	43
60	Normal Vascular Function Despite Low Levels of High-Density Lipoprotein Cholesterol in Carriers of the Apolipoprotein A-I _{Milano} Mutant. Circulation, 2007, 116, 2165-2172.	1.6	42
61	The Extent of Human Apolipoprotein A-I Lipidation Strongly Affects the β-Amyloid Efflux Across the Blood-Brain Barrier in vitro. Frontiers in Neuroscience, 2019, 13, 419.	1.4	42
62	Apolipoprotein AlMilano. Partial lecithin: Cholesterol acyltransferase deficiency due to low levels of a functional enzyme. Lipids and Lipid Metabolism, 1990, 1043, 1-6.	2.6	41
63	Apolipoprotein composition and particle size affect HDL degradation by chymase: effect on cellular cholesterol efflux. Journal of Lipid Research, 2003, 44, 539-546.	2.0	41
64	Recombinant LCAT (Lecithin:Cholesterol Acyltransferase) Rescues Defective HDL (High-Density) Tj ETQq0 0 0 rgl Thrombosis, and Vascular Biology, 2019, 39, 915-924.	BT /Overlo 1.1	ck 10 Tf 50 3 41
65	Autosomal Recessive Hypercholesterolemia. Journal of the American College of Cardiology, 2018, 71, 279-288.	1.2	38
66	Genetic, biochemical, and clinical features of LCAT deficiency: update for 2020. Current Opinion in Lipidology, 2020, 31, 232-237.	1.2	38
67	Macrophage metalloproteinases degrade high-density-lipoprotein-associated apolipoprotein A-I at both the N- and C-termini. Biochemical Journal, 2002, 362, 627-634.	1.7	37
68	Differential effects of fenofibrate and extended-release niacin on high-density lipoprotein particle size distribution and cholesterol efflux capacity in dyslipidemic patients. Journal of Clinical Lipidology, 2013, 7, 414-422.	0.6	37
69	Nutraceutical approach for the management of cardiovascular risk – a combination containing the probiotic Bifidobacterium longum BB536 and red yeast rice extract: results from a randomized, double-blind, placebo-controlled study. Nutrition Journal, 2019, 18, 13.	1.5	37
70	Virtual genetic diagnosis for familial hypercholesterolemia powered by machine learning. European Journal of Preventive Cardiology, 2020, 27, 1639-1646.	0.8	37
71	Lupin protein exerts cholesterol-lowering effects targeting PCSK9: From clinical evidences to elucidation of the in vitro molecular mechanism using HepG2 cells. Journal of Functional Foods, 2016, 23, 230-240.	1.6	36
72	High-Density Lipoprotein, Lecithin: Cholesterol Acyltransferase, and Atherosclerosis. Endocrinology and Metabolism, 2016, 31, 223.	1.3	35

#	Article	IF	CITATIONS
73	Changes in high-density lipoprotein subfraction distribution and increased cholesteryl ester transfer after probucol. American Journal of Cardiology, 1988, 62, B73-B76.	0.7	34
74	Recurrent mutations of the apolipoprotein A-I gene in three kindreds with severe HDL deficiency. Atherosclerosis, 2003, 167, 335-345.	0.4	34
75	Lecithin:Cholesterol Acyltransferase Activation by Sulfhydryl-Reactive Small Molecules: Role of Cysteine-31. Journal of Pharmacology and Experimental Therapeutics, 2017, 362, 306-318.	1.3	34
76	Drug control of reverse cholesterol transport. , 1994, 61, 289-324.		33
77	Effect of statins on LDL particle size in patients with familial combined hyperlipidemia: a comparison between atorvastatin and pravastatin. Nutrition, Metabolism and Cardiovascular Diseases, 2005, 15, 47-55.	1.1	33
78	A novel homozygous mutation in CETP gene as a cause of CETP deficiency in a caucasian kindred. Atherosclerosis, 2009, 205, 506-511.	0.4	33
79	High-Density Lipoprotein Quantity or Quality for Cardiovascular Prevention?. Current Pharmaceutical Design, 2010, 16, 1494-1503.	0.9	33
80	Increased Carotid Artery Intima-Media Thickness in Subjects With Primary Hypoalphalipoproteinemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 317-322.	1.1	32
81	Limited proteolysis of a disulfide-linked apoA-I dimer in reconstituted HDL. Journal of Lipid Research, 2001, 42, 935-942.	2.0	32
82	eNOS Activation by HDL Is Impaired in Genetic CETP Deficiency. PLoS ONE, 2014, 9, e95925.	1.1	31
83	Dysfunctional HDL as a Therapeutic Target for Atherosclerosis Prevention. Current Medicinal Chemistry, 2019, 26, 1610-1630.	1.2	31
84	The C-terminal domain of apolipoprotein A-I is involved in ABCA1-driven phospholipid and cholesterol efflux. Biochemical and Biophysical Research Communications, 2002, 299, 801-805.	1.0	30
85	Abnormal splicing of ABCA1 pre-mRNA in Tangier disease due to a IVS2 +5G>C mutation in ABCA1 gene. Journal of Lipid Research, 2003, 44, 254-264.	2.0	29
86	ï‰-3 Fatty acids selectively raise high-density lipoprotein 2 levels in healthy volunteers. Metabolism: Clinical and Experimental, 1991, 40, 1283-1286.	1.5	27
87	Recombinant human LCAT normalizes plasma lipoprotein profile in LCAT deficiency. Biologicals, 2013, 41, 446-449.	0.5	27
88	Novel mutations of CETP gene in Italian subjects with hyeralphalipoproteinemia. Atherosclerosis, 2009, 204, 202-207.	0.4	26
89	Effect of repeated apoA-IMilano/POPC infusion on lipids, (apo)lipoproteins, and serum cholesterol efflux capacity in cynomolgus monkeys. Journal of Lipid Research, 2013, 54, 2341-2353.	2.0	26
90	Hepatic ACAT2 Knock Down Increases ABCA1 and Modifies HDL Metabolism in Mice. PLoS ONE, 2014, 9, e93552.	1.1	26

#	Article	IF	CITATIONS
91	Macrophage metalloproteinases degrade high-density-lipoprotein-associated apolipoprotein A-I at both the N- and C-termini. Biochemical Journal, 2002, 362, 627.	1.7	25
92	Persistent changes in lipoprotein lipids after a single infusion of ascending doses of MDCO-216 (apoA-IMilano/POPC) in healthy volunteers and stable coronary artery disease patients. Atherosclerosis, 2016, 255, 17-24.	0.4	25
93	High Density Lipoproteins Inhibit Oxidative Stress-Induced Prostate Cancer Cell Proliferation. Scientific Reports, 2018, 8, 2236.	1.6	25
94	Nutraceutical approaches to metabolic syndrome. Annals of Medicine, 2017, 49, 678-697.	1.5	24
95	Apheretic treatment of severe familial hypercholesterolemia: comparison of dextran sulfate cellulose and double membrane filtration methods for low density lipoprotein removal. Atherosclerosis, 1988, 73, 197-202.	0.4	23
96	Protective Effects of HDL Against Ischemia/Reperfusion Injury. Frontiers in Pharmacology, 2016, 7, 2.	1.6	23
97	Gender-related lipid and/or lipoprotein responses to statins in subjects in primary and secondary prevention. Journal of Clinical Lipidology, 2015, 9, 226-233.	0.6	22
98	Effects of a lupin protein concentrate on lipids, blood pressure and insulin resistance in moderately dyslipidaemic patients: A randomised controlled trial. Journal of Functional Foods, 2017, 37, 8-15.	1.6	22
99	Effects of Established Hypolipidemic Drugs on HDL Concentration, Subclass Distribution, and Function. Handbook of Experimental Pharmacology, 2015, 224, 593-615.	0.9	22
100	Individuals with familial hypercholesterolemia and cardiovascular events have higher circulating Lp(a) levels. Journal of Clinical Lipidology, 2019, 13, 778-787.e6.	0.6	21
101	HDL-Mediated Cholesterol Efflux and Plasma Loading Capacities Are Altered in Subjects with Metabolically- but Not Genetically Driven Non-Alcoholic Fatty Liver Disease (NAFLD). Biomedicines, 2020, 8, 625.	1.4	21
102	Apolipoprotein A-II modulates HDL remodeling in plasma. Lipids and Lipid Metabolism, 1992, 1124, 195-198.	2.6	20
103	Synthetic high density lipoproteins for the treatment of myocardial ischemia/reperfusion injury. , 2006, 111, 836-854.		20
104	Plasma-derived and synthetic high-density lipoprotein inhibit tissue factor in endothelial cells and monocytes. Biochemical Journal, 2016, 473, 211-219.	1.7	20
105	Tolerability of fibric acids. comparative data and biochemical bases. Pharmacological Research, 1992, 26, 243-260.	3.1	19
106	Apolipoprotein Aâ€I breakdown is induced by thrombolysis in coronary patients. Annals of Medicine, 2007, 39, 306-311.	1.5	19
107	Low Plasma Lecithin: Cholesterol Acyltransferase (LCAT) Concentration Predicts Chronic Kidney Disease. Journal of Clinical Medicine, 2020, 9, 2289.	1.0	19
108	Progression of chronic kidney disease in familial LCAT deficiency: a follow-up of the Italian cohort. Journal of Lipid Research, 2020, 61, 1784-1788.	2.0	19

#	Article	IF	CITATIONS
109	Combined monogenic hypercholesterolemia and hypoalphalipoproteinemia caused by mutations in LDL-R and LCAT genes. Atherosclerosis, 2005, 182, 153-159.	0.4	18
110	Cholesterol trafficking-related serum lipoprotein functions in children with cholesteryl ester storage disease. Atherosclerosis, 2015, 242, 443-449.	0.4	18
111	Depletion in LpA-I:A-II particles enhances HDL-mediated endothelial protection in familial LCAT deficiency. Journal of Lipid Research, 2017, 58, 994-1001.	2.0	18
112	The plasma concentration of Lpa-I:A-II particles as a predictor of the inflammatory response in patients with ST-elevation myocardial infarction. Atherosclerosis, 2009, 202, 304-311.	0.4	17
113	Conformation of Dimeric Apolipoprotein A-I Milano on Recombinant Lipoprotein Particles. Biochemistry, 2010, 49, 5213-5224.	1.2	17
114	Effect of the amyloidogenic L75P apolipoprotein A-I variant on HDL subpopulations. Clinica Chimica Acta, 2011, 412, 1262-1265.	0.5	17
115	High-Density Lipoproteins and the Kidney. Cells, 2021, 10, 764.	1.8	17
116	Comparison of the lipoprotein and hemostatic changes after a triphasic and a monophasic low dose oral contraceptive in premenopausal middle-aged women. Atherosclerosis, 1990, 84, 203-211.	0.4	16
117	Severe High-Density Lipoprotein Deficiency Associated With Autoantibodies Against Lecithin:Cholesterol Acyltransferase in Non-Hodgkin Lymphoma. Archives of Internal Medicine, 2012, 172, 179.	4.3	16
118	Beta2-adrenergic activity modulates vascular tone regulation in lecithin:cholesterol acyltransferase knockout mice. Vascular Pharmacology, 2015, 74, 114-121.	1.0	16
119	Inhibition of MMP-2 activation and release as a novel mechanism for HDL-induced cardioprotection. FEBS Letters, 2006, 580, 5974-5978.	1.3	15
120	Cardiovascular risk changes after lipid lowering medications: are they predictable?. Atherosclerosis, 2000, 152, 1-8.	0.4	14
121	Plasma PCSK9 levels and lipoprotein distribution are preserved in carriers of genetic HDL disorders. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 991-997.	1.2	14
122	Alterations in the HDL system after rapid plasma cholesterol reduction by LDL-apheresis. Metabolism: Clinical and Experimental, 1988, 37, 752-757.	1.5	13
123	Denaturation and Self-Association of Apolipoprotein A-I Investigated by Electrophoretic Techniques. Biochemistry, 1997, 36, 7898-7905.	1.2	13
124	A proteomic portrait of atherosclerosis. Journal of Proteomics, 2013, 82, 92-112.	1.2	13
125	Activation of Naturally Occurring Lecithin:Cholesterol Acyltransferase Mutants by a Novel Activator Compound. Journal of Pharmacology and Experimental Therapeutics, 2020, 375, 463-468.	1.3	13
126	A Model Structure for the Heterodimer apoA-IMilano–apoA-II Supports Its Peculiar Susceptibility to Proteolysis. Biophysical Journal, 2006, 91, 3043-3049.	0.2	12

#	Article	IF	CITATIONS
127	Molecular characterization of two patients with severe LCAT deficiency. Nephrology Dialysis Transplantation, 2007, 22, 2379-2382.	0.4	12
128	Structure and function of the apoA-IV T347S and Q360H common variants. Biochemical and Biophysical Research Communications, 2010, 393, 126-130.	1.0	12
129	Lipoprotein Glomerulopathy Associated with a Mutation in Apolipoprotein E. Clinical Medicine Insights: Case Reports, 2013, 6, CCRep.S12209.	0.3	12
130	LIPA gene mutations affect the composition of lipoproteins: Enrichment in ACAT-derived cholesteryl esters. Atherosclerosis, 2020, 297, 8-15.	0.4	12
131	Hypocomplementemic Type II Membranoproliferative Glomerulonephritis in a Male Patient with Familial Lecithin-Cholesterol Acyltransferase Deficiency due to Two Different Allelic Mutations. Nephron, 2001, 88, 268-272.	0.9	11
132	Size is a major determinant of dissociation and denaturation behaviour of reconstituted high-density lipoproteins. Biochemical Journal, 2002, 366, 245-253.	1.7	11
133	High-density lipoproteins: a therapeutic target for atherosclerotic cardiovascular disease. Expert Opinion on Therapeutic Targets, 2006, 10, 561-572.	1.5	11
134	The HDL mimetic CERâ€001 remodels plasma lipoproteins and reduces kidney lipid deposits in inherited lecithin:cholesterol acyltransferase deficiency. Journal of Internal Medicine, 2022, 291, 364-370.	2.7	11
135	Emerging role of HDL in brain cholesterol metabolism and neurodegenerative disorders. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, 1867, 159123.	1.2	11
136	Japan: are statins still good for everybody?. Lancet, The, 2006, 368, 1135-1136.	6.3	10
137	CER-001 ameliorates lipid profile and kidney disease in a mouse model of familial LCAT deficiency. Metabolism: Clinical and Experimental, 2021, 116, 154464.	1.5	10
138	A 33-year-old man with nephrotic syndrome and lecithin-cholesterol acyltransferase (LCAT) deficiency. Description of two new mutations in the LCAT gene. Nephrology Dialysis Transplantation, 2004, 19, 1622-1624.	0.4	9
139	A novel mutation of the apolipoprotein A-I gene in a family with familial combined hyperlipidemia. Atherosclerosis, 2008, 198, 145-151.	0.4	9
140	Native LDL-induced oxidative stress in human proximal tubular cells: multiple players involved. Journal of Cellular and Molecular Medicine, 2011, 15, 375-395.	1.6	9
141	Off-target effects of thrombolytic drugs: apolipoprotein A-I proteolysis by alteplase and tenecteplase. Biochemical Pharmacology, 2013, 85, 525-530.	2.0	9
142	Fenofibrate and extended-release niacin improve the endothelial protective effects of HDL in patients with metabolic syndrome. Vascular Pharmacology, 2015, 74, 80-86.	1.0	9
143	Reduced Levels of ABCA1 Transporter Are Responsible for the Cholesterol Efflux Impairment in β-Amyloid-Induced Reactive Astrocytes: Potential Rescue from Biomimetic HDLs. International Journal of Molecular Sciences, 2022, 23, 102.	1.8	9
144	Human apolipoprotein A-II inhibits the formation of pre-β high density lipoproteins. Lipids and Lipid Metabolism, 1996, 1304, 32-42.	2.6	8

#	Article	IF	CITATIONS
145	Structural features and dynamics properties of human apolipoprotein A-I in a model of synthetic HDL. Journal of Molecular Graphics and Modelling, 2009, 28, 305-312.	1.3	8
146	Lipid and Apoprotein Composition of HDL in Partial or Complete CETP Deficiency. Current Vascular Pharmacology, 2012, 10, 422-431.	0.8	8
147	rHDL modeling and the anchoring mechanism of LCAT activation. Journal of Lipid Research, 2021, 62, 100006.	2.0	8
148	LCAT deficiency: molecular and phenotypic characterization of an Italian family. Journal of Nephrology, 2006, 19, 375-81.	0.9	8
149	Structural and dynamic features of apolipoprotein A-I cysteine mutants, Milano and Paris, in synthetic HDL. Journal of Molecular Graphics and Modelling, 2010, 29, 406-414.	1.3	7
150	Abdominal obesity negatively influences key metrics of reverse cholesterol transport. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, 1867, 159087.	1.2	7
151	Paradoxical Decrease in Highâ€Đensity Lipoprotein Cholesterol with Fenofibrate: A Quite Rare Phenomenon Indeed. Cardiovascular Therapeutics, 2010, 28, 153-160.	1.1	6
152	A complex phenotype in a child with familial HDL deficiency due to a novel frameshift mutation in APOA1 gene (apoA-I Guastalla). Journal of Clinical Lipidology, 2015, 9, 837-846.	0.6	6
153	Familial LCAT deficiency: from pathology to enzyme replacement therapy. Clinical Lipidology, 2015, 10, 405-413.	0.4	6
154	A proteomic approach to identify novel disease biomarkers in LCAT deficiency. Journal of Proteomics, 2019, 198, 113-118.	1.2	6
155	Interactions of Oxysterols with Atherosclerosis Biomarkers in Subjects with Moderate Hypercholesterolemia and Effects of a Nutraceutical Combination (Bifidobacterium longum BB536, Red) Tj ETQq1	1.0 .7843	1 4 rgBT /O
156	Distant Homology Modeling of LCAT and Its Validation through In Silico Targeting and In Vitro and In Vivo Assays. PLoS ONE, 2014, 9, e95044.	1.1	6
157	Novel missense variants in LCAT and APOB genes in an Italian kindred with familial lecithin:cholesterol acyltransferase deficiency and hypobetalipoproteinemia. Journal of Clinical Lipidology, 2012, 6, 244-250.	0.6	5
158	Vasculoprotective properties of plasma lipoproteins from brown bears (Ursus arctos). Journal of Lipid Research, 2021, 62, 100065.	2.0	5
159	ApoAâ€i _{Milano} from structure to clinical application. Annals of Medicine, 2008, 40, 48-56.	1.5	4
160	A woman with low HDL cholesterol and corneal opacity. Internal and Emergency Medicine, 2012, 7, 533-537.	1.0	4
161	HDL and endothelial protection: examining evidence from HDL inherited disorders. Clinical Lipidology, 2013, 8, 361-370.	0.4	4
162	Vascular alterations in apolipoprotein A-I amyloidosis (Leu75Pro). A case–control study. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2015, 22, 187-193.	1.4	4

#	Article	IF	CITATIONS
163	Plasma FA composition in familial LCAT deficiency indicates SOAT2-derived cholesteryl ester formation in humans. Journal of Lipid Research, 2022, 63, 100232.	2.0	4
164	CETP levels rather than polymorphisms as markers of coronary risk: Healthy athlete with high HDL-C and coronary disease—effectiveness of probucol. Atherosclerosis, 2006, 186, 225-227.	0.4	3
165	EVIDENCE-BASED MEDICINE CRITERIA APPLIED TO HYPOLIPIDEMIC AND ANTIHYPERTENSIVE DRUG TRIALS: IS DRUG EFFICACY ALWAYS THE SAME?. Pharmacological Research, 1998, 37, 339-343.	3.1	2
166	LCAT deficiency: molecular genetics, lipid/lipoprotein phenotype and atherosclerosis. Future Lipidology, 2006, 1, 241-245.	0.5	2
167	Genetic Determinants of HDL Metabolism. Current Medicinal Chemistry, 2014, 21, 2855-2863.	1.2	2
168	Intracoronary monocyte expression pattern and HDL subfractions after non-ST elevation myocardial infarction. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166116.	1.8	1
169	Genetic LCAT Deficiency: Molecular Diagnosis, Plasma Lipids, and Atherosclerosis. , 2010, , 89-93.		1
170	Familial LCAT deficiency and cardiovascular disease: the game is not over. A case of dramatic multivessel atherosclerosis. Minerva Medica, 2020, , .	0.3	1
171	European Lipoprotein Club: Report of the 27th ELC Annual Conference, Tutzing, 6–9 September 2004. Atherosclerosis, 2005, 178, 407-415.	0.4	0
172	European Lipoprotein Club: Report of the 28th ELC Annual Conference, Tutzing, 12–15 September 2005. Atherosclerosis, 2006, 184, 451-457.	0.4	0
173	Raising HDL cholesterol for cardiovascular disease prevention: Is this still feasible?. Current Cardiovascular Risk Reports, 2008, 2, 35-40.	0.8	Ο
174	The Low-HDL Syndrome: Epidemiology and Pathophysiology. Medical Science Symposia Series, 2002, , 103-108.	0.0	0
175	Sex-Related Differences in the Phenotypic Expression of the Apolipoprotein A-IMilano Mutant. , 1993, , 267-277.		0
176	Two novel variants in the lecithin:cholesterol acyltransferase gene resulted in classic LCAT deficiency. Atherosclerosis Plus, 2022, , .	0.3	0