Sulaiman Al-Zuhair

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/20593/publications.pdf

Version: 2024-02-01

95 papers 3,810 citations

126708 33 h-index 133063 59 g-index

95 all docs 95
docs citations

95 times ranked 3932 citing authors

#	Article	IF	CITATIONS
1	Effect of thermo-responsive switchable solvents on microalgae cells' disruption and non-isothermal combustion kinetics. Biomass Conversion and Biorefinery, 2022, 12, 3275-3288.	2.9	3
2	Removal of Bromine from the non-metallic fraction in printed circuit board via its Co-pyrolysis with alumina. Waste Management, 2022, 137, 283-293.	3.7	31
3	Reaction-diffusion model to describe biodiesel production using lipase encapsulated in ZIF-8. Fuel, 2022, 311, 122630.	3.4	13
4	Simultaneous Enzymatic Cellulose Hydrolysis and Product Separation in a Radial-Flow Membrane Bioreactor. Molecules, 2022, 27, 288.	1.7	6
5	The role of oxygen regulation and algal growth parameters in hydrogen production via biophotolysis. Journal of Environmental Chemical Engineering, 2022, 10, 107003.	3.3	30
6	Immobilization of Lipase on Metal-Organic frameworks for biodiesel production. Journal of Environmental Chemical Engineering, 2022, 10, 107265.	3.3	39
7	Immobilization of Lipase from <i>Thermomyces lanuginosus</i> in Magnetic Macroporous ZIF-8 Improves Lipase Reusability in Biodiesel Preparation. ACS Omega, 2022, 7, 274-280.	1.6	14
8	Dynamic Modelling of Enzymatic Hydrolysis of Oil Using Lipase Immobilized on Zeolite. Sustainability, 2022, 14, 8399.	1.6	2
9	Immobilization of formate dehydrogenase in metal organic frameworks for enhanced conversion of carbon dioxide to formate. Chemosphere, 2021, 267, 128921.	4.2	22
10	Using microalgae for remediation of crude petroleum <scp>oil–water</scp> emulsions. Biotechnology Progress, 2021, 37, e3098.	1.3	14
11	MOFs as Potential Matrices in Cyclodextrin Glycosyltransferase Immobilization. Molecules, 2021, 26, 680.	1.7	17
12	Lipase Immobilization on Macroporous ZIF-8 for Enhanced Enzymatic Biodiesel Production. ACS Omega, 2021, 6, 2143-2148.	1.6	35
13	Advances in Enzyme and Ionic Liquid Immobilization for Enhanced in MOFs for Biodiesel Production. Molecules, 2021, 26, 3512.	1.7	28
14	Dynamic model of simultaneous enzymatic cellulose hydrolysis and product separation in a membrane bioreactor. Biochemical Engineering Journal, 2021, 174, 108107.	1.8	12
15	Biodiesel production from Nannochloropsis gaditana using supercritical CO2 for lipid extraction and immobilized lipase transesterification: Economic and environmental impact assessments. Fuel Processing Technology, 2020, 198, 106249.	3.7	51
16	Improving the economic feasibility of biodiesel production from microalgal biomass via highâ€value products coproduction. International Journal of Energy Research, 2020, 44, 11453-11472.	2.2	22
17	Enhanced selectivity of syngas in partial oxidation of methane: A new route for promising Niâ€alumina catalysts derived from Ni/ <scp>γâ€AlOOH</scp> with modified Ni dispersion. International Journal of Energy Research, 2020, 44, 12081-12099.	2.2	6
18	Techno-Economic Analysis of Green Building Codes in United Arab Emirates Based on a Case Study Office Building. Sustainability, 2020, 12, 8773.	1.6	6

#	Article	IF	CITATIONS
19	Thermo-responsive switchable solvents for simultaneous microalgae cell disruption, oil extraction-reaction, and product separation for biodiesel production. Biocatalysis and Agricultural Biotechnology, 2020, 26, 101667.	1.5	17
20	Simultaneous and rapid quantification of microalga biomolecule content using electrochemical impedance spectroscopy. Biotechnology Progress, 2020, 36, e3037.	1.3	2
21	Use of Microalgae for Simultaneous Industrial Wastewater Treatment and Biodiesel Production. International Journal of Environmental Research, 2020, 14, 311-322.	1.1	6
22	Plasma gasification of municipal solid waste for waste-to-value processing. Renewable and Sustainable Energy Reviews, 2019, 116, 109461.	8.2	120
23	Effect of the Photodynamic Therapy Applications with Potent Microalgae Constituents on Several Types of Tumor. Irbm, 2019, 40, 51-61.	3.7	7
24	Using switchable solvents for enhanced, simultaneous microalgae oil extraction-reaction for biodiesel production. Biochemical Engineering Journal, 2019, 141, 217-224.	1.8	54
25	Simultaneous extraction–reaction process for biodiesel production from microalgae. Energy Reports, 2019, 5, 37-40.	2.5	41
26	Gold extraction from biosolid sludge obtained by sewage treatment. Environmental Technology (United Kingdom), 2019, 40, 2643-2648.	1.2	4
27	Improving the reusability of an immobilized lipase-ionic liquid system for biodiesel production. Biofuels, 2019, 10, 635-641.	1.4	12
28	Enzymatic production of biodiesel from waste oil in ionic liquid medium. Biofuels, 2019, 10, 463-472.	1.4	38
29	Effectiveness of using deep eutectic solvents as an alternative to conventional solvents in enzymatic biodiesel production from waste oils. Energy Reports, 2018, 4, 77-83.	2.5	62
30	Optimizing the Extraction of Oils from Date Seeds for Biodiesel Production. International Journal of Environmental Research, 2018, 12, 101-108.	1,1	8
31	Effect of cresols treatment by microalgae on the cells' composition. Journal of Water Process Engineering, 2018, 26, 250-256.	2.6	18
32	Microalgae cultivation for phenolic compounds removal. Environmental Science and Pollution Research, 2018, 25, 33936-33956.	2.7	33
33	Bilirubin detoxification using different phytomaterials: characterization and in vitro studies. International Journal of Nanomedicine, 2018, Volume 13, 2997-3010.	3.3	17
34	Structural, Textural, and Catalytic Properties of Ti(IV)â€Fe(III) Mixed Oxides Prepared by a Modified Solâ€Gel Route. ChemistrySelect, 2017, 2, 791-799.	0.7	1
35	Evaluation of an activated carbon packed bed for the adsorption of phenols from petroleum refinery wastewater. Environmental Science and Pollution Research, 2017, 24, 7511-7520.	2.7	63
36	The use of alternative solvents in enzymatic biodiesel production: a review. Biofuels, Bioproducts and Biorefining, 2017, 11, 168-194.	1.9	42

#	Article	IF	Citations
37	Hydrogen Production by Steam Reforming of Commercially Available LPG in UAE. Chemical Engineering Communications, 2017, 204, 141-148.	1.5	16
38	Visualization and quantification of oil in single microalgal cells. Journal of Applied Phycology, 2017, 29, 1195-1202.	1.5	1
39	Enzymatic preâ€treatment of microalgae cells for enhanced extraction of proteins. Engineering in Life Sciences, 2017, 17, 175-185.	2.0	35
40	Effect of Enzymatic pre-treatment of microalgae extracts on their anti-tumor activity. Biomedical Journal, 2017, 40, 339-346.	1.4	16
41	Microalgae Cultivation for Phenol Removal from Wastewater. MOJ Toxicology, 2017, 3, .	0.2	1
42	Biochemical catalytic production of biodiesel., 2016,, 165-199.		9
43	Regenerating Diethanolamine Aqueous Solution for CO ₂ Absorption Using Microalgae. Industrial Biotechnology, 2016, 12, 105-108.	0.5	9
44	Petroleum refinery wastewater treatment: A pilot scale study. Journal of Water Process Engineering, 2016, 14, 71-76.	2.6	49
45	High Concentration Phenol Removal Using Freshwater Microalgae. International Journal of Biotechnology for Wellness Industries, 2016, 5, 39-45.	0.3	8
46	Enzymatic Delignification of Biomass for Enhanced Fermentable Sugars Production. Energy Technology, 2015, 3, 121-127.	1.8	11
47	RF Microalgal lipid content characterization. Scientific Reports, 2015, 4, 5108.	1.6	9
48	Monitoring of microalgae lipid accumulation system overview., 2015,,.		1
49	Performance evaluation of LPG desulfurization by adsorption for hydrogen production. Journal of Energy Chemistry, 2015, 24, 477-484.	7.1	6
50	Growth of microalgae using CO2 enriched air for biodiesel production in supercritical CO2. Renewable Energy, 2015, 82, 61-70.	4.3	67
51	Effective extraction of microalgae lipids from wet biomass for biodiesel production. Biomass and Bioenergy, 2014, 66, 159-167.	2.9	176
52	Supercritical carbon dioxide extraction of microalgae lipid: Process optimization and laboratory scale-up. Journal of Supercritical Fluids, 2014, 86, 57-66.	1.6	103
53	Mass transfer modeling of Scenedesmus sp. lipids extracted by supercritical CO 2. Biomass and Bioenergy, 2014, 70, 530-541.	2.9	13
54	Evaluation of a three-step process for the treatment of petroleum refinery wastewater. Journal of Environmental Chemical Engineering, 2014, 2, 56-62.	3.3	121

#	Article	IF	Citations
55	Enzymatic biodiesel production of microalgae lipids under supercritical carbon dioxide: Process optimization and integration. Biochemical Engineering Journal, 2014, 90, 103-113.	1.8	47
56	Development of a membrane bioreactor for enzymatic hydrolysis of cellulose. Renewable Energy, 2013, 56, 85-89.	4.3	33
57	Synergistic effect of pretreatment and hydrolysis enzymes on the production of fermentable sugars from date palm lignocellulosic waste. Journal of Industrial and Engineering Chemistry, 2013, 19, 413-415.	2.9	26
58	PHENOL BIODEGRADATION BY <i>RALSTONIA PICKETTII </i> SLUDGE. Chemical Engineering Communications, 2012, 199, 1194-1204.	1.5	8
59	Continuous production of biodiesel from fat extracted from lamb meat in supercritical CO2 media. Biochemical Engineering Journal, 2012, 60, 106-110.	1.8	46
60	Using Activated Carbon from waste date-pits as an adsorbent for transformer oil regeneration. , 2011, , .		6
61	Extracted fat from lamb meat by supercritical CO2 as feedstock for biodiesel production. Biochemical Engineering Journal, 2011, 55, 23-31.	1.8	61
62	Immobilization of Pseudomonas putida in PVA gel particles for the biodegradation of phenol at high concentrations. Biochemical Engineering Journal, 2011, 56, 46-50.	1.8	48
63	Enzymatic production of biodiesel from used/waste vegetable oils: Design of a pilot plant. Renewable Energy, 2011, 36, 2605-2614.	4.3	40
64	A Review of Enzymatic Transesterification of Microalgal Oil-Based Biodiesel Using Supercritical Technology. Enzyme Research, 2011, 2011, 1-25.	1.8	85
65	Enzymes in Biofuels Production. Enzyme Research, 2011, 2011, 1-2.	1.8	11
66	Continuous biodegradation of phenol in a spouted bed bioreactor (SBBR). Chemical Engineering Journal, 2010, 160, 565-570.	6.6	48
67	Removal of phenol from petroleum refinery wastewater through adsorption on date-pit activated carbon. Chemical Engineering Journal, 2010, 162, 997-1005.	6.6	232
68	Batch degradation of phenol in a spouted bed bioreactor system. Journal of Industrial and Engineering Chemistry, 2010, 16, 267-272.	2.9	45
69	Characterization of polyvinyl alcohol (PVA) gel as support for microbial immobilization. Journal of Biotechnology, 2010, 150, 286-286.	1.9	1
70	Reduction of COD in refinery wastewater through adsorption on date-pit activated carbon. Journal of Hazardous Materials, 2010, 173, 750-757.	6.5	164
71	Dynamic modeling of biodiesel production from simulated waste cooking oil using immobilized lipase. Biochemical Engineering Journal, 2009, 44, 256-262.	1.8	55
72	Simplified approach for predicting gas well performance. Journal of Petroleum Science and Engineering, 2009, 65, 51-61.	2.1	2

#	Article	IF	CITATIONS
73	A general approach for deliverability calculations of gas wells. Journal of Petroleum Science and Engineering, 2009, 67, 97-104.	2.1	13
74	Assessment of electrocoagulation for the treatment of petroleum refinery wastewater. Journal of Environmental Management, 2009, 91, 180-185.	3.8	211
75	Effect of enzyme molecules covering of oil–water interfacial area on the kinetic of oil hydrolysis. Chemical Engineering Journal, 2008, 139, 540-548.	6.6	18
76	The effect of crystallinity of cellulose on the rate of reducing sugars production by heterogeneous enzymatic hydrolysis. Bioresource Technology, 2008, 99, 4078-4085.	4.8	66
77	A General Approach for Deliverability Calculations of Gas Wells. , 2008, , .		6
78	Enzymatic Production of Bio-Diesel from Waste Cooking Oil Using Lipase. Open Chemical Engineering Journal, 2008, 2, 84-88.	0.4	9
79	Kinetics of Aspergillus niger Cellulase Inhibition by Reducing Sugar Produced by the Hydrolysis of Carboxymethylcellulose. International Journal of Chemical Reactor Engineering, 2007, 5, .	0.6	2
80	Production of biodiesel: possibilities and challenges. Biofuels, Bioproducts and Biorefining, 2007, 1 , 57-66.	1.9	315
81	Hydrolysis of palm and olive oils by immobilised lipase using hollow fibre reactor. Biochemical Engineering Journal, 2007, 34, 228-235.	1.8	30
82	Proposed kinetic mechanism of the production of biodiesel from palm oil using lipase. Process Biochemistry, 2007, 42, 951-960.	1.8	204
83	The effect of fatty acid concentration and water content on the production of biodiesel by lipase. Biochemical Engineering Journal, 2006, 30, 212-217.	1.8	93
84	Kinetic study on hydrolysis of oils by lipase with ultrasonic emulsification. Biochemical Engineering Journal, 2006, 32, 19-24.	1.8	42
85	The effect of substrate concentrations on the production of biodiesel by lipase-catalysed transesterification of vegetable oils. Journal of Chemical Technology and Biotechnology, 2006, 81, 299-305.	1.6	17
86	Pressure Drop in Laminar and Turbulent Flows in Circular Pipe with Baffles An Experimental and Analytical Study. International Journal of Fluid Mechanics Research, 2006, 33, 303-319.	0.4	6
87	Production of Biodiesel by Lipase-Catalyzed Transesterification of Vegetable Oils: A Kinetics Study. Biotechnology Progress, 2005, 21, 1442-1448.	1.3	81
88	Adsorption of Lipase on Hollow Fiber Membrane Chips. Artificial Cells, Blood Substitutes, and Biotechnology, 2005, 33, 423-433.	0.9	6
89	Using liquid–liquid deep settling model in determining the design parameters of crude palm oil settler. Separation and Purification Technology, 2004, 35, 133-140.	3.9	5
90	Investigation of the specific interfacial area of a palm oil–water system. Journal of Chemical Technology and Biotechnology, 2004, 79, 706-710.	1.6	20

#	Article	IF	CITATIONS
91	High enzyme concentration model for the kinetics of hydrolysis of oils by lipase. Chemical Engineering Journal, 2004, 103, 7-11.	6.6	19
92	Unsteady-state kinetics of lipolytic hydrolysis of palm oil in a stirred bioreactor. Biochemical Engineering Journal, 2004, 19, 81-86.	1.8	12
93	Kinetics of the enzymatic hydrolysis of palm oil by lipase. Process Biochemistry, 2003, 38, 1155-1163.	1.8	122
94	Emerging Green Technologies for Biodiesel Production., 0,,.		4
95	Electrocoagulation treatment of reject brine effluent from Solvay process. , 0, 163, 325-335.		4