Dipankar Das

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2059171/publications.pdf

Version: 2024-02-01

32	1,303	22	32
papers	citations	h-index	g-index
32	32	32	1884
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Enzyme-Responsive Biopolymeric Nanogel Fibers by Extrusion: Engineering of High-Surface-Area Hydrogels and Application in Bacterial Enzyme Detection. ACS Applied Materials & Diterfaces, 2021, 13, 12928-12940.	8.0	11
2	Dual Functionalized Injectable Hybrid Extracellular Matrix Hydrogel for Burn Wounds. Biomacromolecules, 2021, 22, 514-533.	5.4	18
3	Effects of Molar Ratios of Two Immiscible Monomers toward Development of an Amphiphilic, Highly Stretchable, Bioadhesive, Self-Healing Copolymeric Hydrogel and its Mineral-Active Cellular Behavior. Biomacromolecules, 2020, 21, 892-902.	5.4	12
4	3D printable and injectable lactoferrin-loaded carboxymethyl cellulose-glycol chitosan hydrogels for tissue engineering applications. Materials Science and Engineering C, 2020, 113, 111008.	7.3	45
5	A terpolymeric hydrogel of hyaluronate-hydroxyethyl acrylate-gelatin methacryloyl with tunable properties as biomaterial. Carbohydrate Polymers, 2019, 207, 628-639.	10.2	28
6	Fabrication of alginate-based stimuli-responsive, non-cytotoxic, terpolymric semi-IPN hydrogel as a carrier for controlled release of bovine albumin serum and 5-amino salicylic acid. Materials Science and Engineering C, 2019, 98, 42-53.	7.3	47
7	Biopolymer dextrin and poly (vinyl acetate) based graft copolymer as an efficient corrosion inhibitor for mild steel in hydrochloric acid: Electrochemical, surface morphological and theoretical studies. Journal of Molecular Liquids, 2019, 275, 867-878.	4.9	50
8	Biopolymeric nanogel derived from functionalized glycogen towards targeted delivery of 5-fluorouracil. Polymer, 2018, 140, 122-130.	3.8	21
9	Synthesis and characterizations of alginate- <i>î±</i> -tricalcium phosphate microparticle hybrid film with flexibility and high mechanical property as a biomaterial. Biomedical Materials (Bristol), 2018, 13, 025008.	3.3	32
10	Overviews of Biomimetic Medical Materials. Advances in Experimental Medicine and Biology, 2018, 1064, 3-24.	1.6	11
11	Characterizations of hyaluronate-based terpolymeric hydrogel synthesized via free radical polymerization mechanism for biomedical applications. Colloids and Surfaces B: Biointerfaces, 2018, 170, 64-75.	5.0	45
12	Single-pot biofabrication of living fibers for tissue engineering applications. Journal of Materials Research, 2018, 33, 2019-2028.	2.6	1
13	Biocompatible nanogel derived from functionalized dextrin for targeted delivery of doxorubicin hydrochloride to MG 63 cancer cells. Carbohydrate Polymers, 2017, 171, 27-38.	10.2	41
14	Oleoyl-Chitosan-Based Nanofiber Mats Impregnated with Amniotic Membrane Derived Stem Cells for Accelerated Full-Thickness Excisional Wound Healing. ACS Biomaterials Science and Engineering, 2017, 3, 1738-1749.	5.2	36
15	Evaluation of MC3T3 Cells Proliferation and Drug Release Study from Sodium Hyaluronate-1,4-butanediol Diglycidyl Ether Patterned Gel. Nanomaterials, 2017, 7, 328.	4.1	23
16	Bioactive Molecules Release and Cellular Responses of Alginate-Tricalcium Phosphate Particles Hybrid Gel. Nanomaterials, 2017, 7, 389.	4.1	18
17	Stimuli-responsive, biocompatible hydrogel derived from glycogen and poly(N-isopropylacrylamide) for colon targeted delivery of ornidazole and 5-amino salicylic acid. Polymer Chemistry, 2016, 7, 5426-5435.	3.9	44
18	Biocompatible amphiphilic microgel derived from dextrin and poly(methyl methacrylate) for dual drugs carrier. Polymer, 2016, 107, 282-291.	3.8	14

#	Article	IF	CITATIONS
19	Dextrin and poly(lactide)-based biocompatible and biodegradable nanogel for cancer targeted delivery of doxorubicin hydrochloride. Polymer Chemistry, 2016, 7, 2965-2975.	3.9	50
20	A biodegradable, biocompatible transdermal device derived from carboxymethyl cellulose and multi-walled carbon nanotubes for sustained release of diclofenac sodium. RSC Advances, 2016, 6, 19605-19611.	3.6	60
21	Synthesis and characterization of biodegradable copolymer derived from dextrin and poly(vinyl) Tj ETQq1 1 0.784	814 rgBT / 3.6	Overlock II
22	Development and application of a nanocomposite derived from crosslinked HPMC and Au nanoparticles for colon targeted drug delivery. RSC Advances, 2015, 5, 27481-27490.	3.6	27
23	Modified biopolymer-dextrin based crosslinked hydrogels: application in controlled drug delivery. RSC Advances, 2015, 5, 25014-25050.	3.6	117
24	Dextrin and Poly(acrylic acid)-Based Biodegradable, Non-Cytotoxic, Chemically Cross-Linked Hydrogel for Sustained Release of Ornidazole and Ciprofloxacin. ACS Applied Materials & Interfaces, 2015, 7, 4791-4803.	8.0	105
25	Synthesis of glycogen and poly (acrylic acid)-based graft copolymers via ATRP and its application for selective removal of Pb2+ ions from aqueous solution. European Polymer Journal, 2015, 66, 33-46.	5.4	42
26	Stimulus-Responsive, Biodegradable, Biocompatible, Covalently Cross-Linked Hydrogel Based on Dextrin and Poly(<i>N</i> -isopropylacrylamide) for in Vitro/in Vivo Controlled Drug Release. ACS Applied Materials & Drug Release & Drug Rele	8.0	117
27	Novel pH-responsive graft copolymer based on HPMC and poly(acrylamide) synthesised by microwave irradiation: application in controlled release of ornidazole. Cellulose, 2015, 22, 313-327.	4.9	14
28	Covalent cross-links in polyampholytic chitosan fibers enhances bone regeneration in a rabbit model. Colloids and Surfaces B: Biointerfaces, 2015, 125, 160-169.	5.0	32
29	Dextrin/poly (HEMA): pH responsive porous hydrogel for controlled release of ciprofloxacin. International Journal of Biological Macromolecules, 2015, 72, 171-178.	7.5	50
30	Chitosan Derivatives Cross-Linked with Iodinated 2,5-Dimethoxy-2,5-dihydrofuran for Non-Invasive Imaging. ACS Applied Materials & Samp; Interfaces, 2014, 6, 17926-17936.	8.0	21
31	Dextrin crosslinked with poly(lactic acid): A novel hydrogel for controlled drug release application. Journal of Applied Polymer Science, 2014, 131, .	2.6	42
32	Dextrin cross linked with poly(HEMA): a novel hydrogel for colon specific delivery of ornidazole. RSC Advances, 2013, 3, 25340.	3.6	105