Li Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2058941/publications.pdf

Version: 2024-02-01

361413 414414 1,236 69 20 32 citations h-index g-index papers 69 69 69 895 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Theoretical predict structure and property of the novel CL-20/2,4-DNI cocrystal by systematic search approach. Defence Technology, 2022, 18, 907-917.	4.2	6
2	MOF as the rigid shell to improve the mechanical sensitivity of nitramine explosives. Materials Letters, 2022, 306, 130940.	2.6	5
3	Preparation of modified lead azide compound with high ignition ability based on graphene oxide. Materials Letters, 2022, 314, 131747.	2.6	5
4	Expeditious base-free solid-state reaction between phenyl boronates and hydrogen peroxide on silica gel. Reaction Chemistry and Engineering, 2022, 7, 741-749.	3.7	4
5	Fabrication of nanoscale core–shell structured lead azide/porous carbon based on a metal–organic framework with high safety performance. New Journal of Chemistry, 2022, 46, 4864-4870.	2.8	4
6	Programming a Metal–Organic Framework toward Excellent Hypergolicity. ACS Applied Materials & amp; Interfaces, 2022, 14, 23909-23915.	8.0	9
7	Facile Synthesis of Energetic Nanoparticles of Copper Azide with High Initiation Ability for Micro-Initiator Applications Using Layered Copper Hydroxide. Inorganic Chemistry, 2022, 61, 9096-9103.	4.0	8
8	Synthesis and characterization of an electron-deficient conjugated polymer based on pyridine-flanked diketopyrrolopyrrole. RSC Advances, 2021, 11, 12995-13003.	3.6	2
9	Preparation of Microspherical Phâ^Fe/RDX(HMX) Composite Particles and their Thermal Decomposition Behaviors. Propellants, Explosives, Pyrotechnics, 2021, 46, 690-696.	1.6	4
10	Expedite Fluorescent Sensor Prototype for Hydrogen Peroxide Detection with Long-Life Test Substrates. ACS Omega, 2021, 6, 11447-11457.	3.5	8
11	Molding fabrication of copper azide/porous graphene with high electrostatic safety by self-assembly of graphene oxide. Nanotechnology, 2021, 32, 385704.	2.6	11
12	Molding preparation and research on performance of low-electrostatic-sensitivity, high-output carbon-based copper azide based on metal–organic framework/graphene oxide. Journal of Materials Science, 2021, 56, 15268-15277.	3.7	11
13	Facile fabrication of well-dispersed CuxO nanoneedle on porous carbonized nano sponge and its promising application in the thermal decomposition of ammonium perchlorate. Powder Technology, 2021, 391, 206-213.	4.2	13
14	Preparation of Nanoâ€5pherical Cuâ€en and Its Catalytic Study on the Performance of Solid Propellant. Propellants, Explosives, Pyrotechnics, 2020, 45, 1799-1804.	1.6	7
15	A highly stable octa-coordinated energetic complex. CrystEngComm, 2020, 22, 6591-6595.	2.6	1
16	In situ synthesis of three-dimensional graphene skeleton copper azide with tunable sensitivity performance. Materials Letters, 2020, 279, 128466.	2.6	21
17	Preparation of a nanoscale homogeneous energetic lead azides@porous carbon hybrid with high ignition ability by <i>in situ</i> synthesis. RSC Advances, 2020, 10, 14347-14352.	3.6	11
18	High-performance primary explosives derived from copper thiolate cluster-assembled materials for micro-initiating device. Chemical Engineering Journal, 2020, 389, 124455.	12.7	30

#	Article	IF	CITATIONS
19	Theoretical study of the reduction in sensitivity of copper azide following encapsulation in carbon nanotubes. Journal of Molecular Modeling, 2020, 26, 90.	1.8	5
20	Fluorescent detection of HCl in halogenated solvents <i>via</i> photoinduced electron transfer: towards efficient gamma radiation detection. New Journal of Chemistry, 2020, 44, 11256-11261.	2.8	6
21	Recent progress in integrated functional electrochromic energy storage devices. Journal of Materials Chemistry C, 2020, 8, 15507-15525.	5.5	68
22	Preparation of Ta(Ph)â€Fe/AP Composite Microspheres by Ultrasonic Spray Drying and Characterization of Their Catalytic Properties. Propellants, Explosives, Pyrotechnics, 2020, 45, 368-373.	1.6	2
23	Alkali metal salts of 3,6-dinitramino-1,2,4,5-tetrazine: promising nitrogen-rich energetic materials. CrystEngComm, 2019, 21, 765-772.	2.6	17
24	Thermodynamic properties of 1,3-di (azido-acetoxy)-2-methyl-2-nitropropane. Journal of Thermal Analysis and Calorimetry, 2019, 138, 3023-3029.	3.6	0
25	Fabrication of Copper Azide Film through Metal–Organic Framework for Micro-Initiator Applications. ACS Applied Materials & Interfaces, 2019, 11, 8081-8088.	8.0	53
26	Synthesis of Energetic Complexes [Co(en)(H ₂ BTI) ₂] ₂ â< en, [Cu ₂ (en) ₂ 2] ₂ and Catalytic Study on Thermal Decomposition of Ammonium Perchlorate. Propellants, Explosives, Pyrotechnics, 2019, 44, 816-820.	1.6	24
27	Synthesis, thermal behaviors and thermal safety of 1,3-di (azido-acetoxy)-2-ethyl-2-nitropropane. Journal of Analytical and Applied Pyrolysis, 2019, 142, 104596.	5.5	1
28	Cocrystallization of energetic Mn(II) complex with nitrogen-rich ligand SCZ and oxygen-rich ligand TNR. Journal of Coordination Chemistry, 2019, 72, 468-479.	2.2	0
29	Synthesis of the microspheric cocrystal CL-20/2,4-DNI with high energy and low sensitivity by a spray-drying process. New Journal of Chemistry, 2019, 43, 17390-17394.	2.8	14
30	Catalytic study on thermal decomposition of Cu-en/(AP, CL-20, RDX and HMX) composite microspheres prepared by spray drying. New Journal of Chemistry, 2018, 42, 19062-19069.	2.8	20
31	Catalytic Action of Submicrometer Spherical Ta/Ph-Fe on Combustion of AP/HTPB Propellant. Propellants, Explosives, Pyrotechnics, 2018, 43, 637-641.	1.6	5
32	A novel method to synthesize stable nitrogen-rich polynitrobenzenes with π-stacking for high-energy-density energetic materials. Chemical Communications, 2018, 54, 10296-10299.	4.1	23
33	Nanoscale Homogeneous Energetic Copper Azides@Porous Carbon Hybrid with Reduced Sensitivity and High Ignition Ability. ACS Applied Materials & Samp; Interfaces, 2018, 10, 22545-22551.	8.0	33
34	Research on the thermal performance and storage life of series of high-energy hydrazine nitrate complexes. Journal of Thermal Analysis and Calorimetry, 2017, 129, 1887-1897.	3.6	4
35	A facile method to prepare energetic materials (EMs). RSC Advances, 2017, 7, 48161-48165.	3.6	4
36	Gem-diol and Ketone Crystal-to-crystal Transition Phenomena. Scientific Reports, 2017, 7, 13426.	3.3	8

#	Article	IF	CITATIONS
37	Seven-coordinated chelate $[Cd(SCZ) < sub > 3 < / sub > \hat{A} \cdot H < sub > 2 < / sub > 0] (HTNR) < sub > 2 < / sub > (H < sub > 2 < / sub > 0) < sub > 2 < / sub > $	0.9	2
38	Explosives in the Cage: Metal–Organic Frameworks for Highâ€Energy Materials Sensing and Desensitization. Advanced Materials, 2017, 29, 1701898.	21.0	127
39	Image dehazing using adaptive bi-channel priors on superpixels. Computer Vision and Image Understanding, 2017, 165, 17-32.	4.7	50
40	Chelates with π-stacking and hydrogen-bonding interactions as safer and structurally reinforced energetic materials. Inorganica Chimica Acta, 2017, 466, 405-409.	2.4	8
41	Assembly of composites into a core–shell structure using ultrasonic spray drying and catalytic application in the thermal decomposition of ammonium perchlorate. RSC Advances, 2016, 6, 71223-71231.	3.6	23
42	Metalâ€Organic Framework Templated Synthesis of Copper Azide as the Primary Explosive with Low Electrostatic Sensitivity and Excellent Initiation Ability. Advanced Materials, 2016, 28, 5837-5843.	21.0	108
43	The preparation of sub-micron spherical Fe-Ph/Cl-20 by the spray-drying method and its combustion. RSC Advances, 2016, 6, 115303-115307.	3.6	3
44	Large-scale production of (2,4-DHB) n M micro-nano spheres by spray drying and their application as catalysts for ammonium perchlorate. Journal of Industrial and Engineering Chemistry, 2016, 38, 73-81.	5.8	23
45	Explosives: Metal-Organic Framework Templated Synthesis of Copper Azide as the Primary Explosive with Low Electrostatic Sensitivity and Excellent Initiation Ability (Adv. Mater. 28/2016). Advanced Materials, 2016, 28, 5766-5766.	21.0	6
46	Thermal Kinetic Parameters of Lead Azide and Lead Styphnate with Antistatic Additives. Propellants, Explosives, Pyrotechnics, 2016, 41, 267-272.	1.6	8
47	Orientation-guided geodesic weighting for PatchMatch-based stereo matching. Information Sciences, 2016, 334-335, 293-306.	6.9	1
48	Chelating Energetic Material Nickel Semicarbazide 2,4,6â€Trinitroresorcinol: Synthesis, Structure, and Thermal Behavior. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 1550-1555.	1.2	7
49	Electric-Field-Induced Structural and Electronic Changes and Decomposition of Crystalline Lead Azide: A Computational Study. Journal of Physical Chemistry C, 2015, 119, 8431-8437.	3.1	14
50	Synthesis, Crystal Structure, Thermal and Explosive Properties of [Cd(SCZ) ₃ (H ₂ O)](PA) ₂ ·3H ₂ O (SCZ = Semicarbazide, PA) 1	[j [:II:Q q0 () O&gBT /Over
51	Seven rings, eight-coordinated binuclear chelate: [Ca ₂ (SCZ) ₄ (NO ₃) ₂ (H ₂ O) ₂]Cl <sub< td=""><td>lbx2e/sub</td><td>>(§CZ) Tj E<mark>TC</mark></td></sub<>	lbx2e/sub	>(§ CZ) Tj E <mark>TC</mark>
52	Thermal kinetic performance and storage life analysis of a series of high-energy and green energetic materials. Journal of Thermal Analysis and Calorimetry, 2015, 119, 659-670.	3.6	32
53	Preparation, Crystal Structure, Thermal Decomposition, and DFT Calculation of a Novel 3D Infinite Structure Coordination Polymer [Na ₂] <i>_n</i> (ITDO =) Tj ETQo	ղ1 11.20.784	13 144 rgBT / <mark>O</mark> V
54	Allgemeine Chemie, 2015, 641, 424-429. Preparation, Crystal Structure, and Thermal Decomposition of a Novel Nitrogenâ€rich Compound Zn ₃ (ATZ) ₆ (N ₃)(sub>6 (ATZ = 4â€aminoâ€1,2,4â€triazole, N% =)	Tj ET Qq0	0 û. 5gВТ /Ove

#	Article	IF	CITATIONS
55	Graphene nanoplatelets/lead azide composites for the depressed electrostatic hazards. Materials Letters, 2014, 123, 79-82.	2.6	13
56	Ecoâ€friendly Trifoliate Stable Energetic Zinc Nitrate CoÂordination Compounds: Synthesis, Structures, Thermal and Explosive Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 2991-2997.	1.2	23
57	Energetic Compounds Based on 4â€Aminoâ€1, 2, 4â€triazole (ATZ) and Picrate (PA): [Zn(H ₂ 0) ₆](PA) ₂ ·3H ₂ 0 and [Zn(ATZ) ₃](PA) ₂ ·2.5H ₂ 0] <i>_n</i> . Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 2209-2215.	1.2	16
58	Antistatic Modification of Lead Styphnate and Lead Azide for Surfactant Applications. Propellants, Explosives, Pyrotechnics, 2013, 38, 569-576.	1.6	24
59	The facile synthesis of graphene nanoplatelet–lead styphnate composites and their depressed electrostatic hazards. Journal of Materials Chemistry A, 2013, 1, 12710.	10.3	55
60	Preparation, crystal structures, thermal decompositions and explosive properties of two new high-nitrogen azide ethylenediamine energetic compounds. New Journal of Chemistry, 2013, 37, 646-653.	2.8	36
61	Preparation of Ultrafine TATB and the Technology for Crystal Morphology Control. Chinese Journal of Chemistry, 2012, 30, 293-298.	4.9	17
62	Synthesis, crystal structure and thermal decomposition of a novel environmentally friendly energetic cesium compound, [Cs2(HTNR)(OH)(H2O)]n. Main Group Chemistry, 2011, 10, 205-213.	0.8	10
63	Synthesis, crystal structure, thermal decomposition, and explosive properties of [Bi(tza) ₃] <i>_n </i> (tza = tetrazole acetic acid). Journal of Coordination Chemistry, 2011, 64, 2583-2591.	2.2	19
64	Preparation, Crystal Structure, and Thermal Decomposition of Two Novel Energetic Compounds [Ni(IMI) < sub > 6 < / sub > 1 (L) < sub > 2 < / sub > (L = ClO < sub > 4 < / sub > 6 € (sub > and) Tj ETQq0 0 0 rgBT /Overlock [Ni(IMI) < sub > 6 < / sub > 1 (CO < sub > 3 < / sub >)·5H < sub > 2 < / sub > 0 (IMI = Imidazole). Zeitschrift Fur	₹ 10 Tf 50 1.2	387 Td (NO 17
65	Anorganische Und Allgemeine Chemie, 2011, 637, 2252-2259. Synthesis, Crystal Structure, Thermal Decomposition, and Sensitive Properties of Two Novel Energetic Cadmium(II) Complexes Based on 4-Amino-1,2,4-triazole. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2011, 637, 2215-2222.	1.2	23
66	Preparation, Crystal Structures, Thermal Decomposition and Explosive Properties of Two Novel Energetic Compounds $M(IMI)$ $M(IMI)$ $M(IMI)$ $M(IMI)$ $M(IMI)$ $M(IMI)$ $M(IMI)$ 	0 <u>0</u> .0 rgBT	/Gyerlock 10
	Inorganic Chemistry, 2011, 2011, 2616-2623.		
67	Synthesis, structural investigation and thermal properties of a novel manganese complex Mn2(DAT)2Cl4(H2O)4 (DAT=1,5-diaminotetrazole). Journal of Hazardous Materials, 2010, 178, 1094-1099.	12.4	21
68	Preparation, Crystal Structure, Thermal Decomposition, and Explosive Properties of [Cd(en)(N ₃) ₂] _n . Propellants, Explosives, Pyrotechnics, 2010, 35, 521-528.	1.6	31
69	Fabrication of a nanoscale homogeneous lead azide@carbon fiber film with low electrostatic sensitivity by <i>in situ</i>	2.8	7