Blake Wiedenheft

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2058627/publications.pdf

Version: 2024-02-01

63 papers 8,945

37 h-index

94433

62 g-index

93 all docs 93 docs citations

93 times ranked 8037 citing authors

#	Article	IF	CITATIONS
1	CRISPR-Cas, Argonaute proteins and the emerging landscape of amplification-free diagnostics. Methods, 2022, 205, 1-10.	3.8	12
2	Intrinsic signal amplification by type III CRISPR-Cas systems provides a sequence-specific SARS-CoV-2 diagnostic. Cell Reports Medicine, 2021, 2, 100319.	6.5	56
3	SARS-CoV-2 genomic surveillance identifies naturally occurring truncation of ORF7a that limits immune suppression. Cell Reports, 2021, 35, 109197.	6.4	65
4	Distribution and phasing of sequence motifs that facilitate CRISPR adaptation. Current Biology, 2021, 31, 3515-3524.e6.	3.9	18
5	Metatranscriptome Analysis of Sympatric Bee Species Identifies Bee Virus Variants and a New Virus, Andrena-Associated Bee Virus-1. Viruses, 2021, 13, 291.	3.3	15
6	Reproducible Antigen Recognition by the Type I-F CRISPR-Cas System. CRISPR Journal, 2020, 3, 378-387.	2.9	9
7	Temporal Detection and Phylogenetic Assessment of SARS-CoV-2 in Municipal Wastewater. Cell Reports Medicine, 2020, 1, 100098.	6.5	424
8	AcrIF9 tethers non-sequence specific dsDNA to the CRISPR RNA-guided surveillance complex. Nature Communications, 2020, 11, 2730.	12.8	27
9	Structures and Strategies of Anti-CRISPR-Mediated Immune Suppression. Annual Review of Microbiology, 2020, 74, 21-37.	7.3	62
10	CRISPR Surveillance Turns Transposon Taxi. CRISPR Journal, 2020, 3, 10-12.	2.9	4
11	Complete Genome Sequence of Brucella abortus Phage EF4, Determined Using Long-Read Sequencing. Microbiology Resource Announcements, 2020, 9, .	0.6	3
11	Complete Genome Sequence of Brucella abortus Phage EF4, Determined Using Long-Read Sequencing. Microbiology Resource Announcements, 2020, 9, . Structure Reveals a Mechanism of CRISPR-RNA-Guided Nuclease Recruitment and Anti-CRISPR Viral Mimicry. Molecular Cell, 2019, 74, 132-142.e5.	9.7	3 79
	Microbiology Resource Announcements, 2020, 9, . Structure Reveals a Mechanism of CRISPR-RNA-Guided Nuclease Recruitment and Anti-CRISPR Viral		
12	Microbiology Resource Announcements, 2020, 9, . Structure Reveals a Mechanism of CRISPR-RNA-Guided Nuclease Recruitment and Anti-CRISPR Viral Mimicry. Molecular Cell, 2019, 74, 132-142.e5.	9.7	79
12	Microbiology Resource Announcements, 2020, 9, . Structure Reveals a Mechanism of CRISPR-RNA-Guided Nuclease Recruitment and Anti-CRISPR Viral Mimicry. Molecular Cell, 2019, 74, 132-142.e5. Cas9 slideâ€andâ€seek for phage defense and genome engineering. EMBO Journal, 2019, 38, .	9.7 7.8	79
12 13 14	Microbiology Resource Announcements, 2020, 9, . Structure Reveals a Mechanism of CRISPR-RNA-Guided Nuclease Recruitment and Anti-CRISPR Viral Mimicry. Molecular Cell, 2019, 74, 132-142.e5. Cas9 slideâ€andâ€seek for phage defense and genome engineering. EMBO Journal, 2019, 38, . Type I-F CRISPR–Cas provides protection from DNA, but not RNA phages. Cell Discovery, 2019, 5, 54. CRISPR RNA-guided autonomous delivery of Cas9. Nature Structural and Molecular Biology, 2019, 26,	9.7 7.8 6.7	79 4 7
12 13 14 15	Microbiology Resource Announcements, 2020, 9, . Structure Reveals a Mechanism of CRISPR-RNA-Guided Nuclease Recruitment and Anti-CRISPR Viral Mimicry. Molecular Cell, 2019, 74, 132-142.e5. Cas9 slideâ€andâ€seek for phage defense and genome engineering. EMBO Journal, 2019, 38, . Type I-F CRISPR–Cas provides protection from DNA, but not RNA phages. Cell Discovery, 2019, 5, 54. CRISPR RNA-guided autonomous delivery of Cas9. Nature Structural and Molecular Biology, 2019, 26, 14-24. A PAX5–OCT4–PRDM1 developmental switch specifies human primordial germ cells. Nature Cell	9.7 7.8 6.7	79 4 7 27

#	Article	IF	CITATIONS
19	A Unified Resource for Tracking Anti-CRISPR Names. CRISPR Journal, 2018, 1, 304-305.	2.9	94
20	Bacteriophage Cooperation Suppresses CRISPR-Cas3 and Cas9 Immunity. Cell, 2018, 174, 917-925.e10.	28.9	139
21	The Interfaces of Genetic Conflict Are Hot Spots for Innovation. Cell, 2017, 168, 9-11.	28.9	16
22	CRISPR control of virulence in Pseudomonas aeruginosa. Cell Research, 2017, 27, 163-164.	12.0	4
23	Cas1 and the Csy complex are opposing regulators of Cas2/3 nuclease activity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5113-E5121.	7.1	74
24	Conformational regulation of CRISPR-associated nucleases. Current Opinion in Microbiology, 2017, 37, 110-119.	5.1	43
25	Using Cryoem to Understand How Phages Evade Bacterial CRISPR Defense System. Biophysical Journal, 2017, 112, 334a-335a.	0.5	0
26	Structure Reveals Mechanisms of Viral Suppressors that Intercept a CRISPR RNA-Guided Surveillance Complex. Cell, 2017, 169, 47-57.e11.	28.9	191
27	The CRISPR RNA-guided surveillance complex in <i>Escherichia coli</i> spacers. Nucleic Acids Research, 2016, 44, gkw421.	14.5	42
28	Programmed Self-Assembly of an Active P22-Cas9 Nanocarrier System. Molecular Pharmaceutics, 2016, 13, 1191-1196.	4.6	73
29	Structural basis for promiscuous PAM recognition in type l–E Cascade from E. coli. Nature, 2016, 530, 499-503.	27.8	157
30	A Conserved Structural Chassis for Mounting Versatile CRISPR RNA-Guided Immune Responses. Molecular Cell, 2015, 58, 722-728.	9.7	78
31	Foreign DNA acquisition by the I-FÂCRISPR–Cas system requires all components of the interference machinery. Nucleic Acids Research, 2015, 43, 10848-10860.	14.5	88
32	The history and market impact of CRISPR RNA-guided nucleases. Current Opinion in Virology, 2015, 12, 85-90.	5.4	31
33	Mechanism of foreign DNA recognition by a CRISPR RNA-guided surveillance complex from Pseudomonas aeruginosa. Nucleic Acids Research, 2015, 43, 2216-2222.	14.5	86
34	SnapShot: CRISPR-RNA-Guided Adaptive Immune Systems. Cell, 2015, 163, 260-260.e1.	28.9	21
35	Mechanism of CRISPR-RNA guided recognition of DNA targets in <i>Escherichia coli</i> Research, 2015, 43, 8381-8391.	14.5	45
36	Multiple mechanisms for CRISPR–Cas inhibition by anti-CRISPR proteins. Nature, 2015, 526, 136-139.	27.8	325

#	Article	IF	Citations
37	Surveillance and Processing of Foreign DNA by the Escherichia coli CRISPR-Cas System. Cell, 2015, 163, 854-865.	28.9	177
38	X-ray structure determination using low-resolution electron microscopy maps for molecular replacement. Nature Protocols, 2015, 10, 1275-1284.	12.0	22
39	Fitting CRISPR-associated Cas3 into the Helicase Family Tree. Current Opinion in Structural Biology, 2014, 24, 106-114.	5.7	59
40	Crystal structure of the CRISPR RNA–guided surveillance complex from <i>Escherichia coli</i> Science, 2014, 345, 1473-1479.	12.6	226
41	Unravelling the structural and mechanistic basis of CRISPR–Cas systems. Nature Reviews Microbiology, 2014, 12, 479-492.	28.6	600
42	A CRISPR method for genome engineering. F1000prime Reports, 2014, 6, 3.	5.9	35
43	CRISPR-Mediated Adaptive Immune Systems in Bacteria and Archaea. Annual Review of Biochemistry, 2013, 82, 237-266.	11.1	557
44	In defense of phage. RNA Biology, 2013, 10, 886-890.	3.1	19
45	Type I-E CRISPR-Cas Systems Discriminate Target from Non-Target DNA through Base Pairing-Independent PAM Recognition. PLoS Genetics, 2013, 9, e1003742.	3.5	187
46	Native Tandem and Ion Mobility Mass Spectrometry Highlight Structural and Modular Similarities in Clustered-Regularly-Interspaced Shot-Palindromic-Repeats (CRISPR)-associated Protein Complexes From Escherichia coli and Pseudomonas aeruginosa. Molecular and Cellular Proteomics, 2012, 11, 1430-1441.	3.8	74
47	Mechanism of Foreign DNA Selection in a Bacterial Adaptive Immune System. Molecular Cell, 2012, 46, 606-615.	9.7	229
48	RNA-guided genetic silencing systems in bacteria and archaea. Nature, 2012, 482, 331-338.	27.8	1,584
49	Structures of the RNA-guided surveillance complex from a bacterial immune system. Nature, 2011, 477, 486-489.	27.8	355
50	RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10092-10097.	7.1	413
51	Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nature Structural and Molecular Biology, 2011, 18, 529-536.	8.2	498
52	Sequence- and Structure-Specific RNA Processing by a CRISPR Endonuclease. Science, 2010, 329, 1355-1358.	12.6	599
53	Something Old, Something New, Something Borrowed; How the Thermoacidophilic Archaeon Sulfolobus solfataricus Responds to Oxidative Stress. PLoS ONE, 2009, 4, e6964.	2.5	70
54	Structural Basis for DNase Activity of a Conserved Protein Implicated in CRISPR-Mediated Genome Defense. Structure, 2009, 17, 904-912.	3.3	228

#	ARTICLE	lF	CITATIONS
55	Virus movement maintains local virus population diversity. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19102-19107.	7.1	70
56	Bioprospecting in high temperature environments; application of thermostable protein cages. Soft Matter, 2007, 3, 1091.	2.7	11
57	Hot crenarchaeal viruses reveal deep evolutionary connections. Nature Reviews Microbiology, 2006, 4, 520-528.	28.6	59
58	Dps-like protein from the hyperthermophilic archaeon Pyrococcus furiosus. Journal of Inorganic Biochemistry, 2006, 100, 1061-1068.	3.5	49
59	From The Cover: An archaeal antioxidant: Characterization of a Dps-like protein from Sulfolobus solfataricus. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10551-10556.	7.1	114
60	Comparative Genomic Analysis of Hyperthermophilic Archaeal Fuselloviridae Viruses. Journal of Virology, 2004, 78, 1954-1961.	3.4	131
61	Structure of D-63 from Sulfolobus Spindle-Shaped Virus 1: Surface Properties of the Dimeric Four-Helix Bundle Suggest an Adaptor Protein Function. Journal of Virology, 2004, 78, 7438-7442.	3.4	36
62	Crystal Structure of F-93 from Sulfolobus Spindle-Shaped Virus 1, a Winged-Helix DNA Binding Protein. Journal of Virology, 2004, 78, 11544-11550.	3.4	39
63	Viruses of hyperthermophilic Archaea. Research in Microbiology, 2003, 154, 474-482.	2.1	33