Anton L Maximov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2058611/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mesoporous Metal Catalysts Templated on Clay Nanotubes. Bulletin of the Chemical Society of Japan, 2019, 92, 61-69.	2.0	89
2	Core/Shell Ruthenium–Halloysite Nanocatalysts for Hydrogenation of Phenol. Industrial & Engineering Chemistry Research, 2017, 56, 14043-14052.	1.8	83
3	Hydrodeoxygenation of guaiacol as a model compound of bio-oil in methanol over mesoporous noble metal catalysts. Applied Catalysis A: General, 2018, 553, 24-35.	2.2	74
4	Preparation of high-octane oxygenate fuel components from plant-derived polyols. Petroleum Chemistry, 2011, 51, 61-69.	0.4	67
5	Pd Nanoparticles in Dendrimers Immobilized on Silica–Polyamine Composites as Catalysts for Selective Hydrogenation. ACS Applied Materials & Interfaces, 2014, 6, 8807-8816.	4.0	65
6	Hydroxylation of Phenol by Hydrogen Peroxide Catalyzed by Copper(II) and Iron(III) Complexes: The Structure of the Ligand and the Selectivity of ortho-Hydroxylation. Industrial & Engineering Chemistry Research, 2010, 49, 4607-4613.	1.8	56
7	Copper nanoparticles as active catalysts in hydroxylation of phenol by hydrogen peroxide. Applied Catalysis A: General, 2010, 385, 62-72.	2.2	53
8	Stabilization of gas transport properties of PTMSP with porous aromatic framework: Effect of annealing. Journal of Membrane Science, 2016, 517, 80-90.	4.1	53
9	New approach for highly selective hydrogenation of phenol to cyclohexanone: Combination of rhodium nanoparticles and cyclodextrins. Catalysis Communications, 2016, 73, 63-68.	1.6	53
10	Supramolecular Catalysts on the Basis of Moleculesâ^'Receptors. Industrial & Engineering Chemistry Research, 2005, 44, 8644-8653.	1.8	47
11	Heterogeneous catalytic conversion of glycerol to oxygenated fuel additives. Fuel, 2016, 172, 310-319.	3.4	47
12	Aging of thin-film composite membranes based on PTMSP loaded with porous aromatic frameworks. Journal of Membrane Science, 2018, 554, 211-220.	4.1	47
13	Ruthenium Nanoparticles Stabilized in Cross‣inked Dendrimer Matrices: Hydrogenation of Phenols in Aqueous Media. ChemCatChem, 2015, 7, 1197-1210.	1.8	46
14	Synaptotagmin-11 mediates a vesicle trafficking pathway that is essential for development and synaptic plasticity. Genes and Development, 2019, 33, 365-376.	2.7	46
15	Ruthenium catalysts based on mesoporous aromatic frameworks for the hydrogenation of arenes. Reaction Kinetics, Mechanisms and Catalysis, 2016, 117, 729-743.	0.8	41
16	Catalytic cracking additives based on mesoporous MCM-41 for sulfur removal. Fuel Processing Technology, 2016, 153, 50-57.	3.7	39
17	New catalytic systems for selective oxidation of aromatic compounds by hydrogen peroxide. Catalysis Today, 1998, 44, 189-198.	2.2	38
18	Substrate selectivity in byphasic Wacker-oxidation of alkenes in the presence of water-soluble calixarenes. Journal of Molecular Catalysis A, 2002, 184, 11-17.	4.8	37

#	Article	IF	CITATIONS
19	Palladium nanoparticles on dendrimer-containing supports as catalysts for hydrogenation of unsaturated hydrocarbons. Molecular Catalysis, 2017, 440, 107-119.	1.0	36
20	Mesoporous Al-HMS and Al-MCM-41 supported Ni-Mo sulfide catalysts for HYD and HDS via in situ hydrogen generation through a WGSR. Catalysis Today, 2019, 329, 156-166.	2.2	36
21	Synthesis of nickel–tungsten sulfide hydrodearomatization catalysts by the decomposition of oil-soluble precursors. Petroleum Chemistry, 2016, 56, 44-50.	0.4	34
22	Dendrimer-Stabilized Ru Nanoparticles Immobilized in Organo-Silica Materials for Hydrogenation of Phenols. Catalysts, 2017, 7, 86.	1.6	33
23	Development of micro-mesoporous materials with lamellar structure as the support of NiW catalysts. Microporous and Mesoporous Materials, 2018, 263, 150-157.	2.2	33
24	New Heterogeneous Rh-Containing Catalysts Immobilized on a Hybrid Organic–Inorganic Surface for Hydroformylation of Unsaturated Compounds. ACS Applied Materials & Interfaces, 2018, 10, 26566-26575.	4.0	33
25	Deep aerobic oxidative desulfurization of model fuel by Anderson-type polyoxometalate catalysts. Catalysis Communications, 2021, 149, 106256.	1.6	33
26	Ethers and acetals, promising petrochemicals from renewable sources. Petroleum Chemistry, 2015, 55, 1-21.	0.4	32
27	Transition Metal Phosphides (Ni, Co, Mo, W) for Hydrodeoxygenation of Biorefinery Products (a) Tj ETQq1 1 0.7	784314 rgB 0.4	T /Qverlock 1
28	Biphasic Wacker-oxidation of 1-octene catalyzed by palladium complexes with modified β-cyclodextrins. Journal of Molecular Catalysis A, 2000, 157, 25-30.	4.8	31
29	The catalytic activity of immobilized on modified silica metalloporphyrins bearing antioxidative 2,6-di-tert-butylphenol pendants. Catalysis Communications, 2007, 8, 2069-2073.	1.6	31
30	Nanocatalysts based on dendrimers. Pure and Applied Chemistry, 2009, 81, 2013-2023.	0.9	30
31	Glycerol to renewable fuel oxygenates. Part I: Comparison between solketal and its methyl ether. Fuel, 2019, 249, 486-495.	3.4	30
32	Dispersed Ni-Mo sulfide catalysts from water-soluble precursors for HDS of BT and DBT via in situ produced H2 under Water gas shift conditions. Applied Catalysis B: Environmental, 2021, 282, 119616.	10.8	29
33	Macrocomplexes on the basis of functionalized polyethylene glycols and copolymers of ethylene oxide and propylene oxide: synthesis and catalysis. Journal of Molecular Catalysis A, 1996, 107, 235-240.	4.8	28
34	Supramolecular calixarene-based catalytic systems in the Wacker-oxidation of higher alkenes. Journal of Molecular Catalysis A, 2004, 217, 59-67.	4.8	28
35	Hydroformylation in petroleum chemistry and organic synthesis: Implementation of the process and solving the problem of recycling homogeneous catalysts (Review). Petroleum Chemistry, 2015, 55, 587-603.	0.4	28
36	Methane Pyrolysis for Hydrogen Production: Specific Features of Using Molten Metals. Russian Journal of Applied Chemistry, 2020, 93, 625-632.	0.1	28

#	Article	IF	CITATIONS
37	Palladium nanoparticles encapsulated in a dendrimer networks as catalysts for the hydrogenation of unsaturated hydrocarbons. Journal of Molecular Catalysis A, 2015, 397, 1-18.	4.8	27
38	MWW-Type Zeolites: MCM-22, MCM-36, MCM-49, and MCM-56 (A Review). Petroleum Chemistry, 2019, 59, 788-801.	0.4	27
39	Core-shell nanoarchitecture: Schiff-base assisted synthesis of ruthenium in clay nanotubes. Pure and Applied Chemistry, 2018, 90, 825-832.	0.9	26
40	The Role of Zeolite Catalysis in Modern Petroleum Refining: Contribution from Domestic Technologies. Petroleum Chemistry, 2019, 59, 247-261.	0.4	26
41	Oxidative desulfurization of diesel fraction with hydrogen peroxide in the presence of catalysts based on transition metals. Petroleum Chemistry, 2014, 54, 48-50.	0.4	24
42	Alkyne hydrogenation using Pd–Ag hybrid nanocatalysts in surfaceâ€immobilized dendrimers. Applied Organometallic Chemistry, 2015, 29, 777-784.	1.7	24
43	Catalysts Based on Porous Polyaromatic Frameworks for Deep Oxidative Desulfurization of Model Fuel in Biphasic Conditions. Industrial & Engineering Chemistry Research, 2019, 58, 20562-20572.	1.8	24
44	Glycerol to renewable fuel oxygenates. Part II: Gasoline-blending characteristics of glycerol and glycol derivatives with C3-C4 alkyl(idene) substituents. Fuel, 2020, 280, 118585.	3.4	24
45	Hydrodeoxygenation of guaiacol via in situ H2 generated through a water gas shift reaction over dispersed NiMoS catalysts from oil-soluble precursors: Tuning the selectivity towards cyclohexene. Applied Catalysis B: Environmental, 2022, 312, 121403.	10.8	24
46	Iron and copper complexes with nitrogen-containing ligands as catalysts for cyclohexane oxidation with hydrogen peroxide under mild reaction conditions. Petroleum Chemistry, 2012, 52, 318-326.	0.4	23
47	Hydrogenation catalysts based on metal nanoparticles stabilized by organic ligands. Russian Chemical Bulletin, 2013, 62, 1465-1492.	0.4	23
48	Selective Levulinic Acid Hydrogenation in the Presence of Hybrid Dendrimerâ€Based Catalysts. Part I: Monometallic. ChemCatChem, 2018, 10, 222-233.	1.8	23
49	Selective semi-hydrogenation of phenyl acetylene by Pd nanocatalysts encapsulated into dendrimer networks. Molecular Catalysis, 2019, 469, 98-110.	1.0	23
50	Tandem hydroformylation/hydrogenation over novel immobilized Rh-containing catalysts based on tertiary amine-functionalized hybrid inorganic-organic materials. Applied Catalysis A: General, 2021, 623, 118266.	2.2	23
51	Sulfide Catalysts Supported on Porous Aromatic Frameworks for Naphthalene Hydroprocessing. Catalysts, 2016, 6, 122.	1.6	22
52	Choice of a catalyst and technological scheme for synthesis of solketal. Russian Journal of Applied Chemistry, 2016, 89, 1619-1624.	0.1	22
53	Oxidative functionalization of adamantanes (review). Petroleum Chemistry, 2017, 57, 183-197.	0.4	22
54	Selective conversion of aromatics into cis-isomers of naphthenes using Ru catalysts based on the supports of different nature. Catalysis Today, 2019, 329, 94-101.	2.2	22

#	Article	IF	CITATIONS
55	Selective hydrogenation of terminal alkynes over palladium nanoparticles within the pores of amino-modified porous aromatic frameworks. Catalysis Today, 2020, 357, 176-184.	2.2	22
56	Catalytic properties of transition metal salts immobilized on nanoporous silica polyamine composites II: hydrogenation. Applied Organometallic Chemistry, 2011, 25, 245-254.	1.7	21
57	Nanoheterogeneous ruthenium-containing catalysts based on dendrimers in the hydrogenation of aromatic compounds under two-phase conditions. Petroleum Chemistry, 2016, 56, 491-502.	0.4	21
58	Dendrimerâ€Encapsulated Pd Nanoparticles, Immobilized in Silica Pores, as Catalysts for Selective Hydrogenation of Unsaturated Compounds. ChemistryOpen, 2019, 8, 358-381.	0.9	21
59	Manganese and Cobalt Doped Hierarchical Mesoporous Halloysite-Based Catalysts for Selective Oxidation of p-Xylene to Terephthalic Acid. Catalysts, 2020, 10, 7.	1.6	21
60	Chiral Ligands to Support Self-Assembly of [LPdCl] ₃ Trimers via a Set of Secondary Interactions. Organometallics, 2009, 28, 1027-1031.	1.1	20
61	Petroleum nanodiamonds: New in diamondoid naphthenes. Petroleum Chemistry, 2011, 51, 86-95.	0.4	20
62	Hydrogenation of phenols in ionic liquids on rhodium nanoparticles. Petroleum Chemistry, 2013, 53, 157-163.	0.4	20
63	Initiated conversion of ethanol to divinyl by the Lebedev reaction. Petroleum Chemistry, 2014, 54, 195-206.	0.4	20
64	Hydrocracking of hexadecane to jet fuel components over hierarchical Ru-modified faujasite zeolite. Fuel, 2020, 278, 118193.	3.4	20
65	Supramolecular catalytic systems based on calixarenes and cyclodextrins. Macromolecular Symposia, 2003, 204, 159-174.	0.4	19
66	Mass spectrometric studies of trifluoromethylated fullerenes. International Journal of Mass Spectrometry, 2006, 251, 16-22.	0.7	19
67	Synthesis and properties of high-energy-density hydrocarbons based on 5-vinyl-2-norbornene. Fuel, 2021, 283, 118935.	3.4	19
68	Methylformate as replacement of syngas in one-pot catalytic synthesis of amines from olefins. Catalysis Science and Technology, 2014, 4, 540-547.	2.1	18
69	Platinum and palladium nanoparticles in modified mesoporous phenol—formaldehyde polymers as hydrogenation catalysts. Petroleum Chemistry, 2016, 56, 109-120.	0.4	18
70	Isomerization of Xylenes in the Presence of Pt-Containing Catalysts Based on Halloysite Aluminosilicate Nanotubes. Russian Journal of Applied Chemistry, 2018, 91, 1353-1362.	0.1	18
71	Technologies for Processing of Crude Glycerol from Biodiesel Production: Synthesis of Solketal and Its Hydrolysis to Obtain Pure Glycerol. Russian Journal of Applied Chemistry, 2018, 91, 1478-1485.	0.1	18
72	Thermal depolymerization of polystyrene in highly aromatic hydrocarbon medium. Journal of Analytical and Applied Pyrolysis, 2019, 142, 104612.	2.6	18

#	Article	IF	CITATIONS
73	Hydroprocessing of furfural over in situ generated nickel phosphide based catalysts in different solvents. Applied Catalysis A: General, 2020, 608, 117890.	2.2	18
74	Metal-Free Oxidative Desulfurization Catalysts Based on Porous Aromatic Frameworks. Industrial & amp; Engineering Chemistry Research, 2021, 60, 9049-9058.	1.8	18
75	Molecular Imprinting Technique for the Design of Cyclodextrin Based Materials and Their Application in Catalysis. Current Organic Chemistry, 2010, 14, 1284-1295.	0.9	18
76	Aqueous catalysis by novel macromolecule metal complexes with molecular recognition abilities. Polymers for Advanced Technologies, 2001, 12, 161-168.	1.6	17
77	Molecular Recognition and Catalysis: from Macrocyclic Receptors to Molecularly Imprinted Metal Complexes. Macromolecular Symposia, 2006, 235, 39-51.	0.4	17
78	Palladium nanoparticles on dendrimer-containing supports as catalysts for hydrogenation of unsaturated hydrocarbons. Petroleum Chemistry, 2012, 52, 289-298.	0.4	17
79	Heterogeneous catalytic conversion of glycerol with n-butyl alcohol. Petroleum Chemistry, 2016, 56, 125-130.	0.4	17
80	Glycerol Isopropyl Ethers: Direct Synthesis from Alcohols and Synthesis by the Reduction of Solketal. ChemCatChem, 2017, 9, 2839-2849.	1.8	17
81	Hydrotreating of Light Cycle Oil over Supported on Porous Aromatic Framework Catalysts. Catalysts, 2018, 8, 397.	1.6	17
82	Design of dendrimer-based nanostructured catalyst systems and their catalytic activity in hydrogenation: Synthesis of ruthenium nanoparticles immobilized in dendrimer networks. Petroleum Chemistry, 2010, 50, 290-297.	0.4	16
83	Binary palladium carboxylates with electron-donating and electron-withdrawing substituents in the carboxylate ligand: Synthesis and structural studies. The crystal structures of Pd3(μ-CH2ClCO2)6 · CH2Cl2, Pd3(μ-C6H11CO2)6, and Pd3(μ-CMe3CO2)6. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2011, 37, 625,634	0.3	16
84	Thermo-responsive Ruthenium Dendrimer-based Catalysts for Hydrogenation of the Aromatic Compounds and Phenols. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 1264-1279.	1.9	16
85	The mechanism of promoter-induced zeolite nanosheet crystallization under hydrothermal and microwave irradiation conditions. Inorganic Chemistry Frontiers, 2020, 7, 1400-1410.	3.0	16
86	Moleculesâ€Receptors: Different Approaches to Design Effective Catalysts. Macromolecular Symposia, 2008, 270, 106-116.	0.4	15
87	Nanostructured Macromolecular Metal Containing Materials in Catalysis. Macromolecular Symposia, 2011, 304, 55-64.	0.4	15
88	Nickel-tungsten sulfide aromatic hydrocarbon hydrogenation catalysts synthesized in situ in a hydrocarbon medium. Petroleum Chemistry, 2015, 55, 470-480.	0.4	15
89	Palladium Catalysts Based on Mesoporous Organic Materials in Semihydrogenation of Alkynes. Macromolecular Symposia, 2016, 363, 57-63.	0.4	15
90	Effect of Additives on the Activity of Nickel–Tungsten Sulfide Hydroconversion Catalysts Prepared In Situ from Oil-Soluble Precursors. Catalysts, 2018, 8, 644.	1.6	15

#	Article	IF	CITATIONS
91	Primary and secondary reactions in the synthesis of hydrocarbons from dimethyl ether over a Pd-Zn-HZSM-5/Al2O3 catalyst. Fuel Processing Technology, 2020, 199, 106281.	3.7	15
92	Palladium Catalysts Based on Porous Aromatic Frameworks, Modified with Ethanolamino-Groups, for Hydrogenation of Alkynes, Alkenes and Dienes. Catalysts, 2020, 10, 1106.	1.6	15
93	Ultra-low palladium catalysts for phenylacetylene semihydrogenation: Synthesis by modified pulsed laser ablation–deposition. Applied Catalysis A: General, 2013, 464-465, 253-260.	2.2	14
94	New supramolecular synthons based on 3d transition metal complexes with bidentate bispidines: synthesis and structural, spectroscopic, and electrochemical studies. Russian Chemical Bulletin, 2014, 63, 895-911.	0.4	14
95	Hydrogenation Process for Producing Light Petroleum Resins as Adhesive and Hot-Melt Components (Review). Petroleum Chemistry, 2017, 57, 983-1001.	0.4	14
96	Hydrogenation of petroleum resins in the presence of supported sulfide catalysts. Petroleum Chemistry, 2018, 58, 48-55.	0.4	14
97	Ruthenium Catalysts on ZSM-5/MCM-41 Micro-Mesoporous Support for Hydrodeoxygenation of Guaiacol in the Presence of Water. Russian Journal of Applied Chemistry, 2019, 92, 1170-1178.	0.1	14
98	Ni–Mo sulfide nanosized catalysts from water-soluble precursors for hydrogenation of aromatics under water gas shift conditions. Pure and Applied Chemistry, 2020, 92, 949-966.	0.9	14
99	Dendrimer-based catalysts in Wacker-oxidation: Unexpected selectivity to terminal double bonds. Journal of Molecular Catalysis A, 2009, 297, 73-79.	4.8	13
100	Hydroprocessing of Aromatics Using Sulfide Catalysts Supported on Ordered Mesoporous Phenol–Formaldehyde Polymers. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 1253-1258.	1.9	13
101	Dimethyl Ether to Olefins over Modified ZSM-5 Based Catalysts Stabilized by Hydrothermal Treatment. Catalysts, 2019, 9, 485.	1.6	13
102	The Prins Reaction over Heterogeneous Catalysts (a Review). Petroleum Chemistry, 2020, 60, 723-730.	0.4	13
103	Halloysite as a Zeolite Catalyst Component for Converting Dimethyl Ether Into Hydrocarbons. Chemistry and Technology of Fuels and Oils, 2020, 55, 682-688.	0.2	13
104	Design and preparation of liquid polycyclic norbornanes as potential high performance fuels for aerospace propulsion. Fuel Processing Technology, 2022, 225, 107056.	3.7	13
105	Transformations of Carbon Dioxide under Homogeneous Catalysis Conditions (A Review). Petroleum Chemistry, 2022, 62, 1-39.	0.4	13
106	Hydrogenation of aromatic hydrocarbons in the presence of dibenzothiophene over platinum-palladium catalysts based on Al-SBA-15 aluminosilicates. Petroleum Chemistry, 2014, 54, 94-99.	0.4	12
107	Oxo Processes Involving Ethylene (a Review). Petroleum Chemistry, 2017, 57, 1137-1140.	0.4	12
108	Tandem Hydroformylation–Acetalization Using a Water-Soluble Catalytic System: a Promising Procedure for Preparing Valuable Oxygen-Containing Compounds from Olefins and Polyols. Russian Journal of Applied Chemistry, 2018, 91, 990-995.	0.1	12

#	Article	IF	CITATIONS
109	Carbon Dioxide Reforming of Methane. Russian Journal of Applied Chemistry, 2020, 93, 765-787.	0.1	12
110	The Prins condensation between i-butene and formaldehyde over modified BEA and MFI zeolites in liquid phase. Catalysis Communications, 2020, 138, 105965.	1.6	12
111	Bio-Based Solvents and Gasoline Components from Renewable 2,3-Butanediol and 1,2-Propanediol: Synthesis and Characterization. Molecules, 2020, 25, 1723.	1.7	12
112	Silicoaluminophosphate Molecular Sieves SAPO-11 and SAPO-41: Synthesis, Properties, and Applications for Hydroisomerization of C16+ n-Paraffins. Part 2: Current State of Research on Methods to Control the Crystal Morphology, Dispersion, Acidic Properties, Secondary Porous Structure, and Catalytic Properties of SAPO-11 and SAPO-41 in Hydroisomerization of C16+ n-Paraffins (A Review). Petroleum Chemistry, 2021, 61, 852,870	0.4	12
113	Design of supramolecular metal complex catalytic systems for petrochemical and organic synthesis. Russian Chemical Bulletin, 2008, 57, 780-792.	0.4	11
114	Phenol and dihydroxybenzene hydrogenation catalysts based on polyamide dendrimers and rhodium species. Petroleum Chemistry, 2014, 54, 412-419.	0.4	11
115	Nickel-tungsten sulfide polyaromatic hydrocarbon hydrogenation nanocatalysts prepared in an ionic liquid. Petroleum Chemistry, 2015, 55, 38-44.	0.4	11
116	Catalysis in a dispersion medium for the hydrogenation of aromatics and hydrodearomatization in oil refining. Pure and Applied Chemistry, 2017, 89, 1145-1155.	0.9	11
117	Hydrotreating of Middle-Distillate Fraction on Sulfide Catalysts Containing Crystalline Porous Aluminosilicates. Petroleum Chemistry, 2017, 57, 1151-1155.	0.4	11
118	Oxidation of p-Xylene. Russian Journal of Applied Chemistry, 2018, 91, 707-727.	0.1	11
119	Alkali Earth Catalysts Based on Mesoporous MCM-41 and Al-SBA-15 for Sulfone Removal from Middle Distillates. ACS Omega, 2019, 4, 12736-12744.	1.6	11
120	Synergy of Acidity and Morphology of Micro-/Mesoporous Materials in the Solid-Acid Alkylation of Toluene with 1-Decene. Industrial & Engineering Chemistry Research, 2022, 61, 1994-2009.	1.8	11
121	Supramolecular catalytic systems in biomimetic oxidation. Russian Chemical Bulletin, 2007, 56, 621-630.	0.4	10
122	Reaction between glycerol and acetone in the presence of ethylene glycol. Petroleum Chemistry, 2015, 55, 140-145.	0.4	10
123	Hydrogenation of aromatic hydrocarbons over nickel–tungsten sulfide catalysts containing mesoporous aluminosilicates of different nature. Petroleum Chemistry, 2016, 56, 599-606.	0.4	10
124	Nickel–molybdenum sulfide naphthalene hydrogenation catalysts synthesized by the in situ decomposition of oil-soluble precursors. Petroleum Chemistry, 2017, 57, 595-599.	0.4	10
125	Hydrogenation of Polymeric Petroleum Resins in the Presence of Unsupported Sulfide Nanocatalysts. Petroleum Chemistry, 2017, 57, 1295-1303.	0.4	10
126	Kinetics of the Formation of Solketal in the Presence of Sulfuric Acid. Kinetics and Catalysis, 2018, 59, 504-508.	0.3	10

#	Article	IF	CITATIONS
127	Properties of Nanosized Cobalt-Molybdenum Sulfide Catalyst Formed In Situ from Sulfonium Thiosalt. Petroleum Chemistry, 2019, 59, 504-510.	0.4	10
128	Silicoaluminophosphate Molecular Sieves SAPO-11 and SAPO-41: Synthesis, Properties, and Applications for Hydroisomerization of C16+ n-Paraffins. Part 1: Current State of Research on SAPO-11 and SAPO-41 Synthesis (A Review). Petroleum Chemistry, 2021, 61, 836-851.	0.4	10
129	Heterogeneous Dendrimer-Based Catalysts. Polymers, 2022, 14, 981.	2.0	10
130	Surface active macromolecular and supramolecular complexes: design and catalysis. Macromolecular Symposia, 2000, 156, 137-146.	0.4	9
131	Synthesis of cyclic acetals by hydroformylation of oct-1-ene in the presence of polyols. Russian Chemical Bulletin, 2015, 64, 943-947.	0.4	9
132	Cation-exchange resins in the hydroformylation–acetalization tandem reaction. Petroleum Chemistry, 2016, 56, 711-716.	0.4	9
133	Mesoporous organo-inorganic hybrid materials as hydrogenation catalysts. Pure and Applied Chemistry, 2017, 89, 1157-1166.	0.9	9
134	Bimetallic sulfide catalysts based on mesoporous organic supports in the hydrofining of light cycle oil. Petroleum Chemistry, 2017, 57, 855-858.	0.4	9
135	Nickel–molybdenum and cobalt–molybdenum sulfide hydrogenation and hydrodesulphurization catalysts synthesized in situ from bimetallic precursors. Catalysis in Industry, 2017, 9, 247-256.	0.3	9
136	Application of Zeolite Y-Based Ni–W Supported and In Situ Prepared Catalysts in the Process of Vacuum Gas Oil Hydrocracking. Petroleum Chemistry, 2017, 57, 1287-1294.	0.4	9
137	Production of High-Density Jet and Diesel Fuels by Hydrogenation of Highly Aromatic Fractions. Russian Journal of Applied Chemistry, 2018, 91, 1223-1254.	0.1	9
138	Guaiacol Hydrogenation in an Aqueous Medium in the Presence of a Palladium Catalyst Supported on a Mesoporous Dendrimer-Containing Polymer. Petroleum Chemistry, 2018, 58, 407-411.	0.4	9
139	Hydrogenation of Aromatic Substrates over Dispersed Ni–Mo Sulfide Catalysts in System H2O/CO. Petroleum Chemistry, 2018, 58, 528-534.	0.4	9
140	Obtaining of highly-active catalysts of unsaturated compounds hydrogenation by using supercritical carbon dioxide. Journal of Supercritical Fluids, 2018, 140, 387-393.	1.6	9
141	Diamondoids in Oil and Gas Condensates (Review). Petroleum Chemistry, 2019, 59, 1108-1117.	0.4	9
142	Hydrogenation of Indene–Coumarone Resin on Palladium Catalysts for Use in Polymer Adhesives. Russian Journal of Applied Chemistry, 2019, 92, 1143-1152.	0.1	9
143	Ethylene Hydroformylation in the Presence of Rhodium Catalysts in Hydrocarbon-Rich Media: The Stage of Combined Conversion of Refinery Gases to Oxygenates. Petroleum Chemistry, 2019, 59, 1009-1016.	0.4	9
144	Production of Aromatic Hydrocarbons from Syngas: Principles, Problems, and Prospects. Russian Journal of Applied Chemistry, 2020, 93, 933-953.	0.1	9

#	Article	IF	CITATIONS
145	Bizeolite Pt/ZSM-5:ZSM-12/Al2O3 catalyst for hydroisomerization of C-8 fraction with various ethylbenzene content. Catalysis Today, 2021, 378, 83-95.	2.2	9
146	A stepwise fabrication of MFI nanosheets in accelerated mode. Catalysis Today, 2021, 378, 149-157.	2.2	9
147	Metal Ion Modulated Torsion Angle in a Ditopic Oligothiophene Ligand: Toward Supramolecular Control of π Conjugation. ChemPhysChem, 2010, 11, 3152-3160.	1.0	8
148	Flow reactor synthesis of cetane-enhancing fuel additive from 1-butanol. Fuel Processing Technology, 2015, 140, 312-323.	3.7	8
149	Hydroconversion of Thiophene Derivatives over Dispersed Ni–Mo Sulfide Catalysts. Petroleum Chemistry, 2018, 58, 1227-1232.	0.4	8
150	Synthesis of ZSM-12 Zeolites with New Templates Based on Salts of Ethanolamines. Russian Journal of Applied Chemistry, 2018, 91, 1957-1962.	0.1	8
151	Effect of Binder on the Properties of MWW Zeolite Catalysts in Benzene Alkylation with Propylene. Petroleum Chemistry, 2019, 59, 695-700.	0.4	8
152	Nickel–Tungsten and Nickel–Molybdenum Sulfide Diesel Hydrocarbon Hydrogenation Catalysts Synthesized in Pores of Aromatic Polymer Materials. Petroleum Chemistry, 2019, 59, 575-580.	0.4	8
153	The Joint Synthesis of 1,2-Propylene Glycol and Isopropyl Alcohol by the Copper-Catalyzed Hydrogenolysis of Solketal. ACS Sustainable Chemistry and Engineering, 2019, 7, 9330-9341.	3.2	8
154	In Situ Generated Nanosized Sulfide Ni-W Catalysts Based on Zeolite for the Hydrocracking of the Pyrolysis Fuel Oil into the BTX Fraction. Catalysts, 2020, 10, 1152.	1.6	8
155	Selective Production of Light Olefins from Fischer–Tropsch Synthetic Oil by Catalytic Cracking. Industrial & Engineering Chemistry Research, 2020, 59, 15875-15883.	1.8	8
156	One-pot synthesis of short-chain cyclic acetals <i>via</i> tandem hydroformylation–acetalization under biphasic conditions. Reaction Chemistry and Engineering, 2021, 6, 839-844.	1.9	8
157	Synthesis of olefins from dimethyl ether in a synthesis gas atmosphere. Catalysis Communications, 2021, 153, 106297.	1.6	8
158	Two-phase wacker oxidation of alkenes catalyzed by water-soluble macromolecular complexes of palladium. Macromolecular Symposia, 1998, 131, 87-94.	0.4	7
159	Synthesis of the components of engine fuels on the basis of renewable raw materials: Trends and prospects. Petroleum Chemistry, 2010, 50, 325-331.	0.4	7
160	Catalytic system for the synthesis of cyclic ketals from glycerol and lower carbonyl compounds (High-octane fuel bioadditives). Catalysis in Industry, 2011, 3, 11-14.	0.3	7
161	Catalytic aminomethylation of alkenes in a dimethylformamide medium. Petroleum Chemistry, 2012, 52, 179-185.	0.4	7
162	Hydrogenation of aromatic compounds in the presence of dibenzothiophene over bimetallic catalysts containing mesoporous aluminosilicates. Petroleum Chemistry, 2013, 53, 97-101.	0.4	7

#	Article	IF	CITATIONS
163	Mesoporous organic Pd-containing catalysts for the selective hydrogenation of conjugated hydrocarbons. Russian Chemical Bulletin, 2014, 63, 1710-1716.	0.4	7
164	Catalytic activity of in situ synthesized MoWNi sulfides in hydrogenation of aromatic hydrocarbons. Russian Journal of Physical Chemistry A, 2017, 91, 205-212.	0.1	7
165	Hydrodearomatization catalysts based on molybdenum hexacarbonyl Mo(CO)6 supported on mesoporous aromatic frameworks. Petroleum Chemistry, 2017, 57, 589-594.	0.4	7
166	Stabilization of Gas Transport Properties of Composite Membranes with a Thin PTMSP Selective Layer by Adding Porous Aromatic Framework Nanoparticles and Simultaneous Polymer Crosslinking. Petroleum Chemistry, 2018, 58, 790-796.	0.4	7
167	Ex-Situ Synthesis and Study of Nanosized Mo-Containing Catalyst for Petroleum Residue Hydro-Conversion. Catalysts, 2019, 9, 649.	1.6	7
168	Synthesis of C2–C4 olefins from methanol as a product of methane partial oxidation over zeolite catalyst. Catalysis Communications, 2019, 129, 105744.	1.6	7
169	Catalytic system based on nickel(II) acetate and hypophosphorous acid for the selective hydrodeoxygenation of guaiacol. Mendeleev Communications, 2019, 29, 550-552.	0.6	7
170	Friedel-Crafts Synthesis of New Porous Aromatic Frameworks for Stabilizing Gas Transport Properties of Highly Permeable Glassy Polymers. Russian Journal of Applied Chemistry, 2019, 92, 199-207.	0.1	7
171	A Nanospherical Mesoporous Ruthenium-Containing Polymer as a Guaiacol Hydrogenation Catalyst. Petroleum Chemistry, 2019, 59, 1300-1306.	0.4	7
172	Hydrodeoxygenation of Palmitic and Stearic Acids on Phosphide Catalysts Obtained In Situ in Reaction Medium. Petroleum Chemistry, 2019, 59, 1326-1330.	0.4	7
173	Methyl Formate: How It Can Be Used as Formyl Group Source for Synthesis of Aldehydes via Hydroformylation?. ChemistrySelect, 2020, 5, 6407-6414.	0.7	7
174	Pt and Ru Catalysts Based on Porous Aromatic Frameworks for Hydrogenation of Lignin Biofuel Components. Petroleum Chemistry, 2021, 61, 711-720.	0.4	7
175	Acetone reaction pathways as a model bio-oxygenate in a hydrocarbon medium on zeolite Y and ZSM-5 catalysts: Isotope labeling study. Chemical Engineering Journal, 2022, 431, 134228.	6.6	7
176	Promising Approaches to Carbon Dioxide Processing Using Heterogeneous Catalysts (A Review). Petroleum Chemistry, 2022, 62, 445-474.	0.4	7
177	Molecular design of catalysts on the basis of functionalized poly(ethylene oxide) and block copolymers of ethylene oxide and propylene oxide. Macromolecular Symposia, 1996, 105, 67-74.	0.4	6
178	Oxidation of unsaturated compounds in ionic liquids with the use of cyclodextrin-containing catalytic systems. Petroleum Chemistry, 2007, 47, 331-336.	0.4	6
179	Biphasic catalysis in petrochemical processes. Russian Journal of General Chemistry, 2009, 79, 1370-1383.	0.3	6
180	Modified mesoporous catalysts based on Al-HMS and Al-MCF for the oligomerization of $\hat{l}\pm$ -olefins. Petroleum Chemistry, 2014, 54, 426-430.	0.4	6

#	Article	IF	CITATIONS
181	Hybrid catalysts based on platinum and palladium nanoparticles for the hydrogenation of terpenes under slurry conditions. Petroleum Chemistry, 2016, 56, 1114-1122.	0.4	6
182	Preparation of Ni—W aromatic hydrocarbon hydrogenation catalysts by breaking reverse emulsions or suspensions of a precursor in hydrocarbon feedstock. Petroleum Chemistry, 2016, 56, 131-137.	0.4	6
183	Hydrogenation of Polymeric Petroleum Resins in the Presence of Unsupported Sulfide Catalysts Synthesized from Water-Soluble Precursors. Petroleum Chemistry, 2018, 58, 1192-1197.	0.4	6
184	Regeneration of Zeolite Catalyst for Isobutane Alkylation with Olefins. Petroleum Chemistry, 2018, 58, 827-832.	0.4	6
185	Transacetalization of Solketal: A Greener Route to Bioglycerolâ€Based Speciality Chemicals. ChemistrySelect, 2018, 3, 9759-9766.	0.7	6
186	Activity of Supported and In Situ Synthesized Beta Zeolite Catalysts in the Hydrocracking of Vacuum Gas Oil. Petroleum Chemistry, 2018, 58, 651-658.	0.4	6
187	A possible role of paramagnetic states of iron carbides in the fischer–tropsch synthesis selectivity of nanosized slurry catalysts. Journal of Catalysis, 2019, 380, 32-42.	3.1	6
188	Synthesis and Use of Hydrogenated Polymers. Russian Journal of Applied Chemistry, 2019, 92, 715-733.	0.1	6
189	Production of Ethylene from Ethane Fraction by a Method Alternative to Steam Cracking. Russian Journal of Applied Chemistry, 2019, 92, 1549-1557.	0.1	6
190	Effect of Composition of Cobalt-Molybdenum-Containing Sulfonium Thiosalts on the Hydrogenation Activity of Nanosized Catalysts In Situ Synthesized on Their Basis. Petroleum Chemistry, 2019, 59, 1285-1292.	0.4	6
191	Chemical Conversion of Polymer Wastes into Motor Fuels and Petrochemical Raw Materials (A) Tj ETQq1 1 0.784	1314 rgBT 0.4	/Overlock 10
192	Ni-Based Nanoparticles on Mesoporous Silica Supports for Single-Stage Arsenic and Chlorine Removal during Diesel Fraction Hydrotreating. ACS Omega, 2020, 5, 6611-6618.	1.6	6
193	Highly Selective MTO Reaction over a Nanosized ZSM-5 Zeolite Modified by Fe via the Low-Temperature Dielectric Barrier Discharge Plasma Method. Russian Journal of Applied Chemistry, 2020, 93, 137-148.	0.1	6
194	Design and operation of a pilot plant for syngas to low-aromatic gasoline via DME. Journal of Natural Gas Science and Engineering, 2020, 78, 103288.	2.1	6
195	Features of the Mechanism of the Dimethyl Ether to Light Olefins Conversion over MgZSM-5/Al2O3: Study by Vibrational Spectroscopy Experimental and Theoretical Methods. Catalysis Letters, 2021, 151, 1309-1319.	1.4	6
196	The Effect of MoS2 Active Site Dispersion on Suppression of Polycondensation Reactions during Heavy Oil Hydroconversion. Catalysts, 2021, 11, 676.	1.6	6
197	Non-phosphorus recyclable Rh/triethanolamine catalytic system for tandem hydroformylation/hydrogenation and hydroaminomethylation of olefins under biphasic conditions. Molecular Catalysis, 2021, 516, 112010.	1.0	6
198	Hydroisomerization of n-dodecane on bifunctional catalysts containing mesoporous aluminosilicates. Petroleum Chemistry, 2012, 52, 228-232.	0.4	5

#	Article	IF	CITATIONS
199	Use of ionic liquids in cyclohexene epoxidation with hydrogen peroxide. Petroleum Chemistry, 2013, 53, 110-116.	0.4	5
200	Carbonylation of methanol and dimethyl ether in ionic liquids. Petroleum Chemistry, 2014, 54, 283-287.	0.4	5
201	Lipids of Basidial Fungi as Feedstock for Biodiesel Fuel Production. Chemistry and Technology of Fuels and Oils, 2015, 51, 411-421.	0.2	5
202	Synthesis of Ni–W aromatic hydrocarbon hydrogenation catalysts by the ex situ and in situ decomposition of a precursor based on a dendrimer network. Petroleum Chemistry, 2016, 56, 1107-1113.	0.4	5
203	Synthesis of polyfunctional phosphorus-containing calixarenes in cycloaddition reactions of azides to alkynes. Chemistry of Heterocyclic Compounds, 2016, 52, 1042-1053.	0.6	5
204	Hydroconversion of rosin acids in the presence of Pt-containing Al–HMS mesoporous aluminosilicate. Petroleum Chemistry, 2016, 56, 717-723.	0.4	5
205	Hydroconversion of kerogen-containing raw materials into synthetic crude oil. Solid Fuel Chemistry, 2016, 50, 232-237.	0.2	5
206	Synthesis of novel promising materials via impregnation of crosslinked polymeric networks with metal complexes in supercritical carbon dioxide. Russian Journal of Physical Chemistry B, 2016, 10, 1163-1165.	0.2	5
207	Development of Technologies for More Efficient Deep Processing of Natural Gas. Russian Journal of Applied Chemistry, 2018, 91, 1922-1936.	0.1	5
208	Assessment of the Activity of Dispersed Catalysts in Hydrocracking Reactions of Hydrocarbonaceous Feedstock. Petroleum Chemistry, 2019, 59, 968-974.	0.4	5
209	Conversion of Oxygenates to Aromatic Hydrocarbons on a Commercial Zeolite Catalyst: Comparison of Ethanol and Dimethyl Ether. Russian Journal of Applied Chemistry, 2019, 92, 918-923.	0.1	5
210	Mechanism of Fischer–Tropsch Synthesis over Nanosized Catalyst Particles: Approaches and Problems of Ab Initio Calculations. Petroleum Chemistry, 2019, 59, 485-497.	0.4	5
211	Effect of Template Structure on the Zeolite ZSM-12 Crystallization Process Characteristics. Petroleum Chemistry, 2019, 59, S60-S65.	0.4	5
212	Kinetics of Hydrogenolysis of Glycerol into 1,2-Propylene Glycol on a Copper Catalyst. Kinetics and Catalysis, 2019, 60, 802-807.	0.3	5
213	Dimethyl Ether Conversion to Gasoline Hydrocarbons over Nanosized Zeolite Catalysts: Effect of Modifier Nature. Petroleum Chemistry, 2019, 59, 1331-1336.	0.4	5
214	Processing of Oil-Tank Sludge by Hydrothermal Dispersion using polycomplexants and Amino-Acid-Salts. Chemistry and Technology of Fuels and Oils, 2020, 56, 199-204.	0.2	5
215	Ruthenium- and Palladium-Containing Catalysts Based on Mesoporous Polymer Nanospheres in Guaiacol Hydrogenation. Petroleum Chemistry, 2020, 60, 1136-1140.	0.4	5
216	Pd/SAPO-41 Bifunctional Catalysts with Enhanced Pd Dispersion Prepared by Ultrasonic-Assisted Impregnation: High Selectivity for n-Hexadecane Hydroisomerization. Russian Journal of Applied Chemistry, 2020, 93, 502-511.	0.1	5

#	Article	IF	CITATIONS
217	Modern Methods for Producing Acetic Acid from Methane: New Trends (A Review). Petroleum Chemistry, 2022, 62, 40-61.	0.4	5
218	Oxidation of 2-naphthol in the presence of catalysts based on modified β-cyclodextrins. Petroleum Chemistry, 2007, 47, 402-408.	0.4	4
219	Spectroscopic and electrochemical study of dinuclear and mononuclear copper complexes with the bidentate ligand of the 2,2′-diquinoline series. Russian Chemical Bulletin, 2010, 59, 724-732.	0.4	4
220	Paramagnetic complexes of 9,10-anthraquinone on zeolite surfaces and their thermal transformations. Russian Journal of Physical Chemistry A, 2013, 87, 1947-1951.	0.1	4
221	Hydrogenation processing of oil wastes in the presence of ultrafine catalysts. Petroleum Chemistry, 2015, 55, 667-672.	0.4	4
222	Physicochemical analysis of a kerogen rock (oil shale). Moscow University Chemistry Bulletin, 2016, 71, 329-335.	0.2	4
223	Nickel–molybdenum sulfide catalysts supported on an ordered mesoporous polymer for hydrogenating–hydrocracking of model biaromatic petroleum compounds. Petroleum Chemistry, 2017, 57, 673-677.	0.4	4
224	Hydroconversion of Oxidation Products of Sulfur-Containing Aromatic Compounds. Russian Journal of Applied Chemistry, 2018, 91, 981-989.	0.1	4
225	Chemistry of Dimethyl Ether: Catalytic Synthesis of 1,3-Butadiene. Petroleum Chemistry, 2018, 58, 613-621.	0.4	4
226	Hydrogenated Styrene–Diene Copolymers as Thickening Additives to Lubricating Oils. Russian Journal of Applied Chemistry, 2019, 92, 1179-1189.	0.1	4
227	Features of the Isobutane Alkylation with Butylenes on Zeolite Catalysts. Russian Journal of Applied Chemistry, 2020, 93, 1586-1595.	0.1	4
228	Cobalt-Containing Dispersion Catalysts for Three-Phase Fischer–Tropsch Synthesis. Frontiers in Chemistry, 2020, 8, 567848.	1.8	4
229	Effect of Size Factor on the Activity of Zeolites in the Liquid-Phase Cracking of Hydrocarbons. Petroleum Chemistry, 2020, 60, 30-38.	0.4	4
230	Manufacturing of Coal-Based Synthetic Jet Fuels Interchangeable with JET A-1 and T-8B Petroleum Fuels. Petroleum Chemistry, 2020, 60, 92-103.	0.4	4
231	Catalytic Hydrogenolysis of Solketal on Bifunctional Catalysts with Production of High Octane Components of Motor Fuels. Russian Journal of Applied Chemistry, 2020, 93, 108-117.	0.1	4
232	Complexation of Thiophene Compounds with Transition Metals as the Key to Understanding the Mechanisms of Desulfurization of Petroleum Products (Review). Petroleum Chemistry, 2020, 60, 155-165.	0.4	4
233	A new precursor for synthesis of nickel-tungsten sulfide aromatic hydrogenation catalyst. Molecular Catalysis, 2021, 502, 111357.	1.0	4
234	Non-Porous Sulfonic Acid Catalysts Derived from Vacuum Residue Asphaltenes for Glycerol Valorization via Ketalization with Acetone. Catalysts, 2021, 11, 776.	1.6	4

#	Article	IF	CITATIONS
235	The Effect of Sulfonate Groups in the Structure of Porous Aromatic Frameworks on the Activity of Platinum Catalysts Towards Hydrodeoxygenation of Biofuel Components. Petroleum Chemistry, 2021, 61, 1061-1070.	0.4	4
236	Composite Membranes Based on the Poly(1-trimethylsylyl-1-propine): Influence of the Porous Aromatic Frameworks Produced from the Friedel–Crafts Reaction and Introduced into the Polymer Matrix. Russian Journal of Applied Chemistry, 2020, 93, 252-257.	0.1	4
237	Selective production of γ-valerolactone and ethyl valerate from ethyl levulinate using unsupported nickel phosphide. Applied Catalysis A: General, 2021, 628, 118401.	2.2	4
238	Functionalization strategy influences the porosity of amino-containing porous aromatic frameworks and the hydrogenation activity of palladium catalysts synthesized on their basis. Molecular Catalysis, 2021, , 112012.	1.0	4
239	Dual-Cycle Mechanism Based Kinetic Model for DME-to-Olefin Synthesis on HZSM-5-Type Catalysts. Catalysts, 2021, 11, 1459.	1.6	4
240	Synthesis and multiparameter sensor properties of the crown ontaining thiophene derivatives. Journal of Physical Organic Chemistry, 2010, 23, 246-254.	0.9	3
241	Hybrid macromolecular iron and copper complexes in the phenol hydroxylation reaction. Petroleum Chemistry, 2009, 49, 107-113.	0.4	3
242	Hydrofining of cycle oil using modified nickel-tungsten sulfide catalysts. Petroleum Chemistry, 2014, 54, 366-373.	0.4	3
243	Conversion of triglycerides to fuel hydrocarbons over a Pt–Pd–Al–HMS catalyst. Petroleum Chemistry, 2016, 56, 836-840.	0.4	3
244	Conversion of C19–C38 n-paraffins into components of kerosene and diesel fuels on Pt-containing amorphous aluminosilicate. Moscow University Chemistry Bulletin, 2016, 71, 37-44.	0.2	3
245	Hydrocracking of Vacuum Gas Oil on Bimetallic Ni-Mo Sulfide Catalysts Based on Mesoporous Aluminosilicate Al-HMS. Chemistry and Technology of Fuels and Oils, 2016, 52, 515-526.	0.2	3
246	Naphthalene hydrogenation over nickel–tungsten sulfide catalysts synthesized in situ from DMSO–hydrocarbon medium emulsions. Petroleum Chemistry, 2017, 57, 66-70.	0.4	3
247	Development of Protective-Layer Catalysts for Removal of Chlorine Compounds from Diesel Fractions. Russian Journal of Applied Chemistry, 2018, 91, 2040-2045.	0.1	3
248	Evaluation of the Hydrodesulfurization Activity in Development of Catalysts for Demetallization of Heavy Petroleum Feedstock. Russian Journal of Applied Chemistry, 2018, 91, 2046-2051.	0.1	3
249	Theoretical Study of the Mechanism of Catalytic Alkylation of Adamantane with 2,2,4-Trimethylpentane Cracking Products. Petroleum Chemistry, 2019, 59, 66-70.	0.4	3
250	Cationic Oligomerization of Octene Fraction under Flow Conditions. Petroleum Chemistry, 2019, 59, 1264-1268.	0.4	3
251	Influence of Morphology of Zeolite Catalysts on the Main Indicators of the Isobutane Alkylation Reaction with Butylenes. Petroleum Chemistry, 2019, 59, 1213-1219.	0.4	3
252	Hydro-Oxygenation of Furfural in the Presence of Ruthenium Catalysts Based on Al-HMS Mesoporous Support. Russian Journal of Applied Chemistry, 2019, 92, 1306-1315.	0.1	3

#	Article	IF	CITATIONS
253	Shape Selectivity in Hydroisomerization of n-Hexadecane over Pd Supported on Zeolites: ZSM-22, ZSM-12 and Beta. Russian Journal of Applied Chemistry, 2020, 93, 1427-1437.	0.1	3
254	A Detergent Prepared from Iminodiacetate Derivatives of Fats and Polymucosaccharides from Base Hydrolyzates of Protein-Containing Waste. Russian Journal of Applied Chemistry, 2020, 93, 333-339.	0.1	3
255	Peculiarities of Dispersion of Oil Raw Materials into Aqueous Solutions of Polycomplexones Surfactants. Chemistry and Technology of Fuels and Oils, 2020, 56, 124-128.	0.2	3
256	Acetone Reaction Pathways as a Model Bio-oxygenate in a Hydrocarbon Medium on Zeolite Y and ZSM-5 Catalysts: <i>In Situ</i> FTIR Study. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	3
257	Synthesis of Highly Active Nanozeolites Using Methods of Mechanical Milling, Recrystallization, and Dealumination (A Review). Petroleum Chemistry, 2021, 61, 649-662.	0.4	3
258	Supramolecular Effects and Systems in Catalysis. A Review. Doklady Chemistry, 2022, 502, 1-27.	0.2	3
259	Selective hydrogenation of diene hydrocarbons over palladium catalysts synthesized by modified electric field-assisted laser ablation. Petroleum Chemistry, 2015, 55, 542-548.	0.4	2
260	Synthesis of phosphine-containing dipyrromethene cobalt complexes, promising ligands for homogeneous catalysis in nanomembrane reactors. Russian Journal of Organic Chemistry, 2016, 52, 1625-1631.	0.3	2
261	Hydrogenation of Unsaturated Hydrocarbons on Platinum and Palladium Catalysts Encapsulated in Mesoporous Bakelites. Chemistry and Technology of Fuels and Oils, 2017, 53, 318-332.	0.2	2
262	Hydrotreating of High-Aromatic Waste of Coke and By-Product Processes in the Presence of in Situ Synthesized Sulfide Nanocatalysts. Petroleum Chemistry, 2017, 57, 1304-1309.	0.4	2
263	Promoted catalysts for hydrogenation of bicyclic aromatic hydrocarbons obtained in situ from molybdenum and tungsten carbonyls. Petroleum Chemistry, 2018, 58, 22-31.	0.4	2
264	Study of the Oxidation Products of Light Oil Aromatic Compounds Using Ultrahigh Resolution Mass Spectrometry. Chemistry and Technology of Fuels and Oils, 2018, 53, 891-896.	0.2	2
265	Synthesis of Hydrocarbon Resins by Thermal Polymerization of Unsaturated Compounds of Pyrolysis Fractions. Chemistry and Technology of Fuels and Oils, 2018, 54, 299-306.	0.2	2
266	Catalytic Decomposition of Methyl Formate in the Presence of Transition Metal Complexes, Phosphine Ligands and Water. Petroleum Chemistry, 2019, 59, 412-419.	0.4	2
267	Diesel Fraction Hydrotreating in the Presence of Nickel–Tungsten Sulfide Catalyst Particles In Situ Synthesized in Pores of Aromatic Polymers. Petroleum Chemistry, 2019, 59, S66-S71.	0.4	2
268	Cyclohexene Epoxidation Catalysts Based on Porous Aromatic Frameworks. Petroleum Chemistry, 2020, 60, 1087-1093.	0.4	2
269	The Prospects for Processing Reservoir Oil Sludge into Hydrocarbons by Low-Temperature Hydrogenation in Sorbing Electrochemical Matrices in Comparison with Conventional High-Temperature Hydrocracking. Energies, 2020, 13, 5362.	1.6	2
270	Conversion of Methanol to Aromatic-Rich Gasoline over High-Efficiency Bifunctional Catalysts: Green Synthesis of GaZSM-5 Zeolites via Dry-Gel Conversion Strategy. Russian Journal of Applied Chemistry, 2020, 93, 127-136.	0.1	2

#	Article	IF	CITATIONS
271	Hydroconversion of 2-methylnaphtalene and dibenzothiophene over sulfide catalysts in the presence of water under CO pressure. Russian Chemical Bulletin, 2020, 69, 280-288.	0.4	2
272	Synthesis of liquid hydrocarbons enriched with triptane via dimethyl ether conversion over combined catalyst. Russian Chemical Bulletin, 2020, 69, 691-696.	0.4	2
273	Crystallization of Zeolites in the Presence of Diquaternary Alkylammonium Salts Derived from Dimethylethanolamine. Petroleum Chemistry, 2021, 61, 815-824.	0.4	2
274	Evaluation of sulfide catalysts performance in hydrotreating of oil fractions using comprehensive gas chromatography time-of-flight mass spectrometry. Pure and Applied Chemistry, 2020, 92, 941-948.	0.9	2
275	Particular kinetic patterns of heavy oil feedstock hydroconversion in the presence of dispersed nanosize MoS ₂ . Pure and Applied Chemistry, 2020, 92, 1111-1121.	0.9	2
276	Biphenyl Hydrogenation with Syngas for Hydrogen Purification and Transportation: Performance of Dispersed Catalytic Systems Based on Transition Metal Sulfides. Petroleum Chemistry, 2021, 61, 1131-1137.	0.4	2
277	Investigations on the Formation of Transition Metal Phosphides during the Hydrotreating of Light Cycle Oil. Russian Journal of Applied Chemistry, 2021, 94, 1536-1545.	0.1	2
278	Niobium (V) peroxocomplexes as a catalyst of oxidation of methylphenylsulphide by hydroperoxide. Moscow University Chemistry Bulletin, 2010, 65, 380-383.	0.2	1
279	Oligomerization of higher $\hat{l}\pm$ -olefins over catalysts containing an F-4SF perfluorinated copolymer. Petroleum Chemistry, 2014, 54, 120-127.	0.4	1
280	Hydrofining of light cycle oil over in situ synthesized nickel–tungsten sulfide catalysts. Petroleum Chemistry, 2016, 56, 510-521.	0.4	1
281	Development of Ni–Mo Sorption-Catalytic Materials for Removing Arsenic Compounds from Middle Distillates. Russian Journal of Applied Chemistry, 2018, 91, 1688-1693.	0.1	1
282	Activity of Zeolites of Different Types in n-Alkane Cracking in a Three-Phase Reactor. Petroleum Chemistry, 2019, 59, 596-602.	0.4	1
283	Application of Extended Irreversible Thermodynamics to Nanosized Systems: Effect of Diffusion and Chemical Reactions on the Properties of Ni–W Sulfide Catalysts. Petroleum Chemistry, 2019, 59, 518-528.	0.4	1
284	Effect of the Textural Characteristics of Zeolite Catalysts on the Main Indicators of Isobutane Alkylation with Butylenes. Petroleum Chemistry, 2019, 59, S95-S100.	0.4	1
285	Comparison of Morphology and Physicochemical Properties of Embryonic and Nanosized ZSM-5 Zeolites and Their Use in the Dealkylation Reaction of Aromatic Hydrocarbons (a Review). Petroleum Chemistry, 2020, 60, 909-922.	0.4	1
286	Selective Hydrogenation of Phenylacetylene on a Pd-Containing Catalyst Based on a Polymer Layered Substrate. Russian Journal of Applied Chemistry, 2020, 93, 258-267.	0.1	1
287	Novel Strained Alicyclic Hydrocarbons Based on 5-Methylene-2-norbornene. Petroleum Chemistry, 2021, 61, 1033-1039.	0.4	1
288	Ultrafine metal-polymer catalysts based on polyconjugated systems for Fisher–Tropsch synthesis. Pure and Applied Chemistry, 2020, 92, 977-984.	0.9	1

#	Article	IF	CITATIONS
289	Naphthalene Hydrogenation over Catalysts Formed In Situ from Ruthenium-Containing Thiosalts. Petroleum Chemistry, 2018, 58, 1213-1220.	0.4	0
290	Study of the Catalytic Stability of Dispersed Molybdenum–Tungsten–Nickel Sulfides in Bicyclic Hydrocarbon Hydrogenation Recycles. Petroleum Chemistry, 2018, 58, 564-572.	0.4	0
291	Effect of Chemical Composition of Zeolite Catalysts on Their Catalytic Properties in Isobutane Alkylation with Butylenes. Petroleum Chemistry, 2019, 59, 706-710.	0.4	0
292	Hydroprocessing of Vacuum Gas Oil on NiMo Sulfide Catalyst Supported on an Ordered Mesoporous Polymer. Russian Journal of Applied Chemistry, 2019, 92, 300-303.	0.1	0
293	Detection of Steady State Multiplicity during Dimethyl Ether Conversion Catalyzed by ZnO/γ-Al2O3 Composite: Effect of Coke and Hydrogen Peroxide. Petroleum Chemistry, 2020, 60, 773-784.	0.4	0
294	Features of a Three-Phase One-Step Synthesis of Alcohols from СО and Ð2 in the Presence of Cu–Co-Containing Slurries. Petroleum Chemistry, 2020, 60, 1129-1135.	0.4	0
295	The 18 th IUPAC International Symposium Macromolecular-Metal Complexes (10–13 June,) Tj ETQ	q110.78 0.9	4314 rgBT
296	Hydrogenation of Butadiene–Styrene Rubber over Palladium Nanoparticles Synthesized In Situ: Selection of Stabilizer. Petroleum Chemistry, 2021, 61, 1118.	0.4	0
297	Specific Features of the In Situ Formation of an Unsupported NiWS Nanosize Catalyst from Oil-Soluble Precursors. Catalysis Letters, 0, , .	1.4	0
298	Advances in the Chemistry of Unsaturated Adamantane Derivatives (A Review). Petroleum Chemistry, 2022, 62, 352.	0.4	0