Alper Kiziltas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2058469/publications.pdf Version: 2024-02-01

		394286	330025
42	1,438	19	37
papers	citations	h-index	g-index
42 all docs	42 docs citations	42 times ranked	2091 citing authors

ALDED KIZUTAS

#	Article	IF	CITATIONS
1	Improvement of the thermal conductivity and tribological properties of polyethylene by incorporating functionalized boron nitride nanosheets. Tribology International, 2022, 165, 107277.	3.0	12
2	Hybrid composites with engineered polysaccharides for automotive lightweight. Composites Part C: Open Access, 2022, 7, 100222.	1.5	10
3	Biocarbon: A lightweight, functional filler for underâ€theâ€hood automotive composites. Polymer Composites, 2022, 43, 2034-2046.	2.3	4
4	Life cycle energy and greenhouse gas emissions implications of polyamide 12 recycling from selective laser sintering for an injectionâ€molded automotive component. Journal of Industrial Ecology, 2022, 26, 1378-1388.	2.8	9
5	Flexible polyurethane foams reinforced with organic and inorganic nanofillers. Journal of Applied Polymer Science, 2021, 138, 49983.	1.3	20
6	Biobased flexible polyurethane foams manufactured from lactideâ€based polyesterâ€ether polyols for automotive applications. Journal of Applied Polymer Science, 2021, 138, 50690.	1.3	12
7	Polyethylene-BN nanosheets nanocomposites with enhanced thermal and mechanical properties. Composites Science and Technology, 2021, 204, 108631.	3.8	25
8	Dynamical Water Ingress and Dissolution at the Amorphous–Crystalline Cellulose Interface. Biomacromolecules, 2021, 22, 3884-3891.	2.6	9
9	Calculation of 1D and 2D densities in VMD: A flexible and easy-to-use code. Computer Physics Communications, 2021, 266, 108032.	3.0	10
10	Characterization of graphene nanoplatelets reinforced sustainable thermoplastic elastomers. Composites Part C: Open Access, 2021, 6, 100172.	1.5	2
11	Graphene nanoplatelet reinforcement for thermal and mechanical properties enhancement of bio-based polyamide 6, 10 nanocomposites for automotive applications. Composites Part C: Open Access, 2021, 6, 100177.	1.5	15
12	Metal–organic framework structure–property relationships for high-performance multifunctional polymer nanocomposite applications. Journal of Materials Chemistry A, 2021, 9, 4348-4378.	5.2	34
13	Hybrid celluloseâ€inorganic reinforcement polypropylene composites: Lightweight materials for automotive applications. Polymer Composites, 2020, 41, 1074-1089.	2.3	34
14	Polyol from spent coffee grounds: Performance in a model pour-in-place rigid polyurethane foam system. Journal of Cellular Plastics, 2020, 56, 630-645.	1.2	11
15	Hybrid Cellulose-Glass Fiber Composites for Automotive Applications. Materials, 2019, 12, 3189.	1.3	32
16	Study of Agave Fiber-Reinforced Biocomposite Films. Materials, 2019, 12, 99.	1.3	16
17	Production of bacterial cellulose fibers in the presence of effective microorganism. Journal of Natural Fibers, 2019, 16, 567-575.	1.7	12
18	Structure and properties of compatibilized recycled polypropylene/recycled polyamide 12 blends with cellulose fibers addition. Polymer Composites, 2018, 39, 3556-3563.	2.3	13

ALPER KIZILTAS

#	Article	IF	CITATIONS
19	Rheological and thermal properties of exfoliated graphite nanoplateletsâ€filled impact modified polypropylene nanocomposites. Polymer Composites, 2018, 39, E1512.	2.3	6
20	A case for closed-loop recycling of post-consumer PET for automotive foams. Waste Management, 2018, 71, 97-108.	3.7	23
21	Closed-loop recycling of polyamide12 powder from selective laser sintering into sustainable composites. Journal of Cleaner Production, 2018, 195, 765-772.	4.6	24
22	Nanoclay reinforced polyethylene composites: Effect of different melt compounding methods. Polymer Engineering and Science, 2017, 57, 324-334.	1.5	7
23	Blue-Agave Fiber-Reinforced Polypropylene Composites for Automotive Applications. BioResources, 2017, 13, .	0.5	17
24	Cellulose NANOFIBERâ€polyethylene nanocomposites modified by polyvinyl alcohol. Journal of Applied Polymer Science, 2016, 133, .	1.3	41
25	Flexible polyurethane foams formulated with polyols derived from waste carbon dioxide. Journal of Applied Polymer Science, 2016, 133, .	1.3	38
26	Method to reinforce polylactic acid with cellulose nanofibers via a polyhydroxybutyrate carrier system. Carbohydrate Polymers, 2016, 140, 393-399.	5.1	50
27	Electrically conductive nano graphite-filled bacterial cellulose composites. Carbohydrate Polymers, 2016, 136, 1144-1151.	5.1	47
28	Synthesis of bacterial cellulose using hot water extracted wood sugars. Carbohydrate Polymers, 2015, 124, 131-138.	5.1	112
29	Biosynthesis of bacterial cellulose in the presence of different nanoparticles to create novel hybrid materials. Carbohydrate Polymers, 2015, 129, 148-155.	5.1	44
30	Preparation and characterization of transparent PMMA–cellulose-based nanocomposites. Carbohydrate Polymers, 2015, 127, 381-389.	5.1	105
31	Thermal Analysis of Micro- and Nano-Lignocellulosic Reinforced Styrene Maleic Anhydride Composite Foams. International Journal of Polymer Analysis and Characterization, 2015, 20, 231-239.	0.9	12
32	Influence of Micro- and Nanonatural Fillers on Mechanical and Physical Properties of Foamed SMA Composites. Polymer-Plastics Technology and Engineering, 2014, 53, 1825-1831.	1.9	5
33	Polyamide 6–Cellulose Composites: Effect of Cellulose Composition on Melt Rheology and Crystallization Behavior. Polymer Engineering and Science, 2014, 54, 739-746.	1.5	80
34	Exfoliated graphite nanoplatelet-filled impact modified polypropylene nanocomposites: influence of particle diameter, filler loading, and coupling agent on the mechanical properties. Applied Nanoscience (Switzerland), 2014, 4, 279-291.	1.6	32
35	Impact properties and rheological behavior of exfoliated graphite nanoplatelet-filled impact modified polypropylene nanocomposites. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	12
36	Morphological characterization of foamed natural filler-reinforced styrene maleic anhydride (SMA) composites. Journal of Porous Materials, 2014, 21, 1059-1067.	1.3	4

Alper Kiziltas

#	Article	IF	CITATIONS
37	Natural fiber blend—nylon 6 composites. Polymer Composites, 2013, 34, 544-553.	2.3	76
38	Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose, 2013, 20, 2379-2392.	2.4	289
39	Polymer Nanocomposites from the Surface Energy Perspective. Reviews of Adhesion and Adhesives, 2013, 1, 175-215.	3.3	9
40	Understanding the Affinity between Components of Wood–Plastic Composites from a Surface Energy Perspective. Journal of Adhesion Science and Technology, 2011, 25, 1785-1801.	1.4	10
41	Time and temperature dependent response of a wood–polypropylene composite. Composites Part A: Applied Science and Manufacturing, 2011, 42, 834-842.	3.8	44
42	Dynamic mechanical behavior and thermal properties of microcrystalline cellulose (MCC)-filled nylon 6 composites. Thermochimica Acta, 2011, 519, 38-43.	1.2	71