
Yong-Tae Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2058211/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Designable functional polymer nanocomposites via layer-by-layer assembly for highly deformable power-boosted triboelectric nanogenerators. Composites Part B: Engineering, 2022, 230, 109513.	12.0	17
2	Conformation-dependent thermoelectric power factor of multilayer nanocomposites. Applied Surface Science, 2022, 594, 153483.	6.1	4
3	Mechanically Sustainable Starch-Based Flame-Retardant Coatings on Polyurethane Foams. Polymers, 2021, 13, 1286.	4.5	13
4	Synergistic Flame Retardant Effects of Carbon Nanotubeâ€Based Multilayer Nanocoatings. Macromolecular Materials and Engineering, 2021, 306, 2100233.	3.6	11
5	Designable Skin-like Triboelectric Nanogenerators Using Layer-by-Layer Self-Assembled Polymeric Nanocomposites. ACS Energy Letters, 2021, 6, 2451-2459.	17.4	31
6	Facile deposition of environmentally benign organic-inorganic flame retardant coatings to protect flammable foam. Progress in Organic Coatings, 2021, 161, 106480.	3.9	11
7	Layer-by-Layer Self-Assembled Thin Films for Triboelectric Energy Harvesting under Harsh Conditions. ACS Applied Electronic Materials, 2021, 3, 5475-5482.	4.3	8
8	Enhanced Triboelectric Performance of Modified PDMS Nanocomposite Multilayered Nanogenerators. Materials, 2020, 13, 4156.	2.9	29
9	Effect of the Conformation Changes of Polyelectrolytes on Organic Thermoelectric Performances. Macromolecular Research, 2020, 28, 997-1002.	2.4	6
10	PET/Graphene Compatibilization for Different Aspect Ratio Graphenes via Trimellitic Anhydride Functionalization. ACS Omega, 2020, 5, 3228-3239.	3.5	16
11	Higher-Order Structure in Amorphous Poly(ethylene terephthalate)/Graphene Nanocomposites and Its Correlation with Bulk Mechanical Properties. ACS Omega, 2019, 4, 1228-1237.	3.5	18
12	Editorial for the Special Issue on Nanogenerators in Korea. Micromachines, 2019, 10, 97.	2.9	0
13	Energy-loss return gate via liquid dielectric polarization. Nature Communications, 2018, 9, 1437.	12.8	19
14	Layer-by-layer assembled graphene multilayers on multidimensional surfaces for highly durable, scalable, and wearable triboelectric nanogenerators. Journal of Materials Chemistry A, 2018, 6, 3108-3115.	10.3	51
15	Improving Fire Resistance of Cotton Fabric through Layer-by-Layer Assembled Graphene Multilayer Nanocoating. Journal of the Korean Physical Society, 2018, 72, 1052-1057.	0.7	10
16	Manipulation of p-/n-Type Thermoelectric Thin Films through a Layer-by-Layer Assembled Carbonaceous Multilayer Structure. Micromachines, 2018, 9, 628.	2.9	7
17	Fabrication of New Liquid Crystal Device Using Layer-by-Layer Thin Film Process. Processes, 2018, 6, 108.	2.8	11
18	Polyethylene Terephthalate/Trimellitic Anhydride Modified Graphene Nanocomposites. ACS Applied Nano Materials. 2018, 1, 6301-6311.	5.0	21

Yong-Tae Park

#	Article	IF	CITATIONS
19	Fire protection behavior of layer-by-layer assembled starch–clay multilayers on cotton fabric. Journal of Materials Science, 2018, 53, 11433-11443.	3.7	42
20	Enhanced Sensitivity of Patterned Graphene Strain Sensors Used for Monitoring Subtle Human Body Motions. ACS Applied Materials & Interfaces, 2017, 9, 11176-11183.	8.0	75
21	Plasmonic–Photonic Interference Coupling in Submicrometer Amorphous TiO ₂ –Ag Nanoarchitectures. Langmuir, 2017, 33, 12398-12403.	3.5	12
22	High electrical conductivity and oxygen barrier property of polymer-stabilized graphene thin films. Carbon, 2017, 125, 492-499.	10.3	17
23	Enhanced Piezoelectric Behavior of PVDF Nanocomposite by AC Dielectrophoresis Alignment of ZnO Nanowires. Journal of Nanomaterials, 2017, 2017, 1-5.	2.7	14
24	Note: Automatic layer-by-layer spraying system for functional thin film coatings. Review of Scientific Instruments, 2016, 87, 036110.	1.3	14
25	Wettability conversion of an aluminum-hydroxide nanostructure by ion implantation. Journal of the Korean Physical Society, 2016, 68, 1024-1028.	0.7	4
26	Direct fabrication of superhydrophobic ceramic surfaces with ZnO nanowires. Journal of the Korean Physical Society, 2016, 68, 452-455.	0.7	4
27	Highly Stretchable and Wearable Graphene Strain Sensors with Controllable Sensitivity for Human Motion Monitoring. ACS Applied Materials & Interfaces, 2015, 7, 6317-6324.	8.0	533
28	Epoxy Toughening with Low Graphene Loading. Advanced Functional Materials, 2015, 25, 575-585.	14.9	301
29	AFM Probing of Polymer/Nanofiller Interfacial Adhesion and Its Correlation with Bulk Mechanical Properties in a Poly(ethylene terephthalate) Nanocomposite. Langmuir, 2014, 30, 12950-12959.	3.5	22
30	Melt crystallization of poly(ethylene terephthalate): Comparing addition of graphene vs. carbon nanotubes. Polymer, 2014, 55, 2077-2085.	3.8	74
31	Polyol-Assisted Vermiculite Dispersion in Polyurethane Nanocomposites. ACS Applied Materials & Interfaces, 2013, 5, 3054-3062.	8.0	35
32	Aqueous reduced graphene/thermoplastic polyurethane nanocomposites. Polymer, 2013, 54, 4555-4559.	3.8	58
33	Modification with tertiary amine catalysts improves vermiculite dispersion in polyurethane via in situ intercalative polymerization. Polymer, 2012, 53, 5060-5068.	3.8	19
34	Fully organic ITO replacement through acid doping of double-walled carbon nanotube thin film assemblies. RSC Advances, 2011, 1, 662.	3.6	36
35	Super Gas Barrier of All-Polymer Multilayer Thin Films. Macromolecules, 2011, 44, 1450-1459.	4.8	193
36	Heating and acid doping thin film carbon nanotube assemblies for high transparency and low sheet resistance. Journal of Materials Chemistry, 2011, 21, 363-368.	6.7	41

#	Article	IF	CITATIONS
37	Fast switching electrochromism from colloidal indium tin oxide in tungstate-based thin film assemblies. Electrochimica Acta, 2010, 55, 3257-3267.	5.2	15
38	High Electrical Conductivity and Transparency in Deoxycholate-Stabilized Carbon Nanotube Thin Films. Journal of Physical Chemistry C, 2010, 114, 6325-6333.	3.1	56