Vasil Andruch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2058141/publications.pdf

Version: 2024-02-01

98 papers

3,918 citations

147801 31 h-index 59 g-index

98 all docs 98 docs citations 98 times ranked 3043 citing authors

#	Article	IF	CITATIONS
1	Application of deep eutectic solvents in analytical chemistry. A review. Microchemical Journal, 2017, 135, 33-38.	4.5	442
2	Recent advances in dispersive liquid–liquid microextraction using organic solvents lighter than water. A review. Microchemical Journal, 2012, 102, 11-17.	4. 5	252
3	Deep eutectic solvents vs ionic liquids: Similarities and differences. Microchemical Journal, 2020, 159, 105539.	4.5	243
4	Deep eutectic solvents are not only effective extractants. TrAC - Trends in Analytical Chemistry, 2020, 129, 115956.	11.4	144
5	Liquid–phase microextraction: A review of reviews. Microchemical Journal, 2019, 149, 103989.	4.5	143
6	The role of water in deep eutectic solvent-base extraction. Journal of Molecular Liquids, 2020, 304, 112747.	4.9	134
7	Application of ultrasonic irradiation and vortex agitation in solvent microextraction. TrAC - Trends in Analytical Chemistry, 2013, 49, 1-19.	11.4	101
8	A fully automated effervescence-assisted switchable solvent-based liquid phase microextraction procedure: Liquid chromatographic determination of ofloxacin in human urine samples. Analytica Chimica Acta, 2016, 907, 54-59.	5.4	93
9	Automated on-line dispersive liquid–liquid microextraction based on a sequential injection system. Microchemical Journal, 2012, 100, 77-82.	4.5	91
10	Recent achievements in solidified floating organic drop microextraction. TrAC - Trends in Analytical Chemistry, 2015, 68, 48-77.	11.4	88
11	Methods for the determination of adenosine triphosphate and other adenine nucleotides. Journal of Analytical Chemistry, 2009, 64, 657-673.	0.9	83
12	Recent advances in coupling single-drop and dispersive liquid–liquid microextraction with UV–vis spectrophotometry and related detection techniques. Microchemical Journal, 2012, 102, 1-10.	4.5	81
13	Ten years of dispersive liquid–liquid microextraction and derived techniques. Applied Spectroscopy Reviews, 2017, 52, 267-415.	6.7	78
14	Five Years of Dispersive Liquid–Liquid Microextraction. Applied Spectroscopy Reviews, 2013, 48, 161-259.	6.7	74
15	A novel approach in dispersive liquid–liquid microextraction based on the use of an auxiliary solvent for adjustment of density. Talanta, 2010, 82, 1958-1964.	5 . 5	71
16	In situ decomposition of deep eutectic solvent as a novel approach in liquid-liquid microextraction. Analytica Chimica Acta, 2019, 1065, 49-55.	5 . 4	69
17	Automatic determination of copper by in-syringe dispersive liquid–liquid microextraction of its bathocuproine-complex using long path-length spectrophotometric detection. Talanta, 2012, 99, 349-356.	5 . 5	67
18	Solvent microextraction: A review of recent efforts at automation. Microchemical Journal, 2013, 110, 599-607.	4.5	64

#	Article	IF	CITATIONS
19	A novel, environmentally friendly dispersive liquid–liquid microextraction procedure for the determination of copper. Microchemical Journal, 2011, 99, 40-45.	4.5	62
20	The present state of coupling of dispersive liquid–liquid microextraction with atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 2013, 28, 19-32.	3.0	57
21	Using an Optical Probe as the Microdrop Holder in Headspace Single Drop Microextraction: Determination of Sulfite in Food Samples. Analytical Chemistry, 2016, 88, 10296-10300.	6.5	52
22	Ligandless switchable solvent based liquid phase microextraction of nickel from food and cigarette samples prior to its micro-sampling flame atomic absorption spectrometric determination. Journal of Molecular Liquids, 2017, 237, 236-241.	4.9	48
23	A single-valve sequential injection manifold (SV-SIA) for automation of air-assisted liquid-phase microextraction: stopped flow spectrophotometric determination of chromium(vi). Analytical Methods, 2013, 5, 2497.	2.7	45
24	Application of deep eutectic solvents for separation and determination of bioactive compounds in medicinal plants. Industrial Crops and Products, 2021, 172, 114047.	5.2	44
25	A dispersive liquid–liquid microextraction procedure for determination of boron in water after ultrasound-assisted conversion to tetrafluoroborate. Talanta, 2011, 85, 541-545.	5.5	40
26	Classification and terminology in dispersive liquid–liquid microextraction. Microchemical Journal, 2016, 127, 184-186.	4.5	40
27	Development of novel techniques to extract phenolic compounds from Romanian cultivars of Prunus domestica L. and their biological properties. Food and Chemical Toxicology, 2018, 119, 189-198.	3.6	40
28	An automatic, vigorous-injection assisted dispersive liquid–liquid microextraction technique for stopped-flow spectrophotometric detection of boron. Talanta, 2015, 133, 127-133.	5 . 5	39
29	Flow method based on liquid-liquid extraction using deep eutectic solvent for the spectrofluorimetric determination of procainamide in human saliva. Talanta, 2017, 168, 307-312.	5 . 5	38
30	Use of Innovative (Micro)Extraction Techniques to Characterise <scp><i>Harpagophytum procumbens</i><iscp> Root and its Commercial Food Supplements. Phytochemical Analysis, 2018, 29, 233-241.</iscp></scp>	2.4	38
31	A fully automated effervescence assisted dispersive liquid–liquid microextraction based on a stepwise injection system. Determination of antipyrine in saliva samples. Analytica Chimica Acta, 2016, 902, 129-134.	5.4	33
32	Green analytical chemistry as an integral part of sustainable education development. Current Opinion in Green and Sustainable Chemistry, 2021, 31, 100508.	5.9	33
33	Separation of chromium (VI) using complexation and its determination with GFAAS. Microchemical Journal, 2006, 82, 61-65.	4.5	30
34	Automated alkaline-induced salting-out homogeneous liquid-liquid extraction coupled with in-line organic-phase detection by an optical probe for the determination of diclofenac. Talanta, 2017, 169, 156-162.	5 . 5	29
35	Spectrophotometric study of the complexation and extraction of chromium(VI) with cyanine dyes. Talanta, 2000, 53, 543-549.	5.5	28
36	Liquid-phase microextraction: update May 2016 to December 2018. Applied Spectroscopy Reviews, 2020, 55, 307-326.	6.7	28

#	Article	IF	Citations
37	Application of a bisindocarbocyanine reagent for dispersive liquid–liquid microextraction of silver with subsequent spectrophotometric determination. Microchemical Journal, 2011, 99, 514-522.	4.5	27
38	Investigation of tetrabutylammonium bromide-glycerol-based deep eutectic solvents and their mixtures with water by spectroscopic techniques. Journal of Molecular Liquids, 2021, 330, 115617.	4.9	27
39	Simultaneous determination of three carbamate pesticides using vortex-assisted liquid–liquid microextraction combined with HPLC-amperometric detection. Microchemical Journal, 2019, 150, 104071.	4.5	26
40	An air-assisted liquid–liquid extraction using a dual-valve sequential injection manifold (DV-SIA): Determination of copper. Analytical Methods, 2010, 2, 1134.	2.7	25
41	A glance at achievements in the coupling of headspace and direct immersion singleâ€drop microextraction with chromatographic techniques. Journal of Separation Science, 2013, 36, 3758-3768.	2.5	25
42	Automated sugaring-out liquid-liquid extraction based on flow system coupled with HPLC-UV for the determination of procainamide in urine. Talanta, 2017, 167, 709-713.	5.5	24
43	Liquid Phase and Microwave-Assisted Extractions for Multicomponent Phenolic Pattern Determination of Five Romanian Galium Species Coupled with Bioassays. Molecules, 2019, 24, 1226.	3.8	24
44	Application of DV-SIA manifold for determination of thiocyanate ions in human saliva samples. Talanta, 2012, 96, 107-112.	5.5	23
45	Highly sensitive sequential injection determination of p-aminophenol in paracetamol formulations with 18-molybdodiphosphate heteropoly anion based on elimination of Schlieren effect. Talanta, 2012, 96, 230-235.	5.5	23
46	A novel vortex-assisted liquid–liquid microextraction approach using auxiliary solvent: Determination of iodide in mineral water samples. Talanta, 2016, 149, 110-116.	5.5	23
47	A two-in-one device for online monitoring of direct immersion single-drop microextraction: an optical probe as both microdrop holder and measuring cell. RSC Advances, 2017, 7, 29421-29427.	3.6	23
48	Application of deep eutectic solvents in bioanalysis. TrAC - Trends in Analytical Chemistry, 2022, 154, 116660.	11,4	23
49	A dispersive liquid–liquid microextraction procedure for UV-Vis spectrophotometric determination of chromium(vi) in water samples. Analytical Methods, 2012, 4, 1410.	2.7	22
50	Remarks on use of the term "deep eutectic solvent―in analytical chemistry. Microchemical Journal, 2022, 179, 107498.	4.5	22
51	Deep Eutectic Solvents or Eutectic Mixtures? Characterization of Tetrabutylammonium Bromide and Nonanoic Acid Mixtures. Journal of Physical Chemistry B, 2022, 126, 3889-3896.	2.6	22
52	Investigation of 2-[(E)-2-(4-diethylaminophenyl)-1-ethenyl]-1,3,3-trimethyl-3H-indolium as a new highly sensitive reagent for the spectrophotometric determination of nitrophenols. Analytical and Bioanalytical Chemistry, 2005, 382, 1431-1437.	3.7	21
53	A novel dual-valve sequential injection manifold (DV-SIA) for automated liquid–liquid extraction. Application for the determination of picric acid. Analytica Chimica Acta, 2010, 666, 55-61.	5.4	21
54	Fully automated on-line flow-batch based ultrasound-assisted surfactant-mediated extraction and determination of anthraquinones in medicinal plants. Microchemical Journal, 2014, 116, 98-106.	4.5	21

#	Article	IF	CITATIONS
55	Recent advances in the application of nanoparticles in cloud point extraction. Journal of Molecular Liquids, 2019, 281, 93-99.	4.9	21
56	An investigation of the reaction of copper ions with dimethylindodicarbocyanine dyeAn application for the determination of Cu(I), Cu(II) and Cu(III). Talanta, 2008, 76, 111-115.	5 . 5	20
57	A green cloud-point extraction-chromogenic system for vanadium determination. Journal of Molecular Liquids, 2017, 248, 135-142.	4.9	20
58	Vortex-assisted liquid-liquid microextraction procedure for iodine speciation in water samples. Microchemical Journal, 2017, 132, 59-68.	4.5	19
59	Investigation of 2-[2-(4-Methoxy-phenylamino)-vinyl]-1,3,3-trimethyl-3H-indolium Chloride as a New Reagent for the Determination of Chromium(VI). Mikrochimica Acta, 2003, 142, 109-113.	5.0	17
60	Interfacial reaction using particle-immobilized reagents in a fluidized reactor. Determination of glycerol in biodiesel. Analytica Chimica Acta, 2016, 914, 75-80.	5.4	17
61	Use of sequential injection analysis with lab-at-valve and an optical probe for simultaneous spectrophotometric determination of ascorbic acid and cysteine by mean centering of ratio kinetic profiles. Talanta, 2018, 188, 99-106.	5 . 5	17
62	A simple method of boron determination in mineral waters using Victoria blue 4R. International Journal of Environmental Analytical Chemistry, 2009, 89, 449-459.	3.3	16
63	A comparison of various modes of liquid–liquid based microextraction techniques: Determination of picric acid. Journal of Separation Science, 2013, 36, 932-938.	2.5	16
64	Application of solidification of floating organic drop microextraction for inorganic anions: Determination of phosphate in water samples. Microchemical Journal, 2015, 122, 10-15.	4.5	16
65	Simultaneous determination of rutin and ascorbic acid in a sequential injection lab-at-valve system. Journal of Pharmaceutical and Biomedical Analysis, 2018, 149, 179-184.	2.8	16
66	11-Molybdobismuthophosphateâ€"A new reagent for the determination of ascorbic acid in batch and sequential injection systems. Talanta, 2010, 80, 1838-1845.	5 . 5	15
67	Visual detection and sequential injection determination of aluminium using a cinnamoyl derivative. Talanta, 2015, 133, 27-33.	5 . 5	15
68	Fluorescent Iminodiacetamide Derivatives as Potential Ionophores for Optical Zinc Ion-selective Sensors. Analytical Sciences, 2008, 24, 727-733.	1.6	14
69	Application of deep eutectic solvents in atomic absorption spectrometry. TrAC - Trends in Analytical Chemistry, 2022, 147, 116510.	11.4	14
70	Application of liquidâ€phase microextraction to the analysis of plant and herbal samples. Phytochemical Analysis, 2020, 31, 687-699.	2.4	13
71	Closer look into the structures of tetrabutylammonium bromide–glycerol-based deep eutectic solvents and their mixtures with water. Journal of Molecular Liquids, 2021, 338, 116676.	4.9	13
72	Rapid, sensitive and selective spectrophotometric determination of phosphate as an ion associate of 12-molybdophosphate with Astra Phloxine. Mikrochimica Acta, 2007, 159, 371-378.	5.0	12

#	Article	IF	CITATIONS
73	A spectrophotometric method for manganese determination in water samples based on ion pair formation and dispersive liquid–liquid microextraction. International Journal of Environmental Analytical Chemistry, 2012, 92, 1059-1071.	3.3	12
74	Application of cinnamoyl derivative as a new ligand for dispersive liquid-liquid microextraction and spectrophotometric determination of cobalt. Journal of Analytical Chemistry, 2015, 70, 298-304.	0.9	12
75	An environmentally friendly cloud point extraction–spectrophotometric determination of trace vanadium using a novel reagent. Journal of Molecular Liquids, 2021, 334, 116086.	4.9	12
76	The application of ultrasound for the improvement of analytical procedures: Determination of boron. Analytical Methods, 2010, 2, 1275.	2.7	10
77	A Novel Non-Extractive Sequential Injection Procedure for Determination of Cadmium. Analytical Letters, 2011, 44, 431-445.	1.8	10
78	Liquid–liquid microextraction and spectrophotometric determination of anionic surfactants using Astra Phloxine FF. International Journal of Environmental Analytical Chemistry, 2015, 95, 217-224.	3.3	10
79	Spectrophotometric determination of manganese with derivatives of 1,3,3-trimethyl-2-[3-(1,3,3-trimethyl-1,3- H -indol-2-ylidene)propenyl]-3 H -indolium. Analytical and Bioanalytical Chemistry, 2003, 377, 709-714.	3.7	9
80	A non-extractive sequential injection method for determination of molybdenum. Talanta, 2012, 96, 185-189.	5.5	9
81	Dispersive liquid-phase microextraction procedure for spectrometric determination of cadmium. Microchemical Journal, 2013, 107, 3-9.	4.5	9
82	Comparative spectrophotometric study of the complexation and extraction of tellurium with various halide ions and N,N′-di(acetoxyethyl)indocarbocyanine. Analytica Chimica Acta, 1999, 386, 161-167.	5.4	8
83	Stepwise injection determination of isoniazid in human urine samples coupled with generalized calibration method. Microchemical Journal, 2015, 123, 111-117.	4.5	8
84	Automated solid sample dissolution coupled with sugaring-out homogenous liquid-liquid extraction. Application for the analysis of throat lozenge samples. Journal of Molecular Liquids, 2017, 233, 149-155.	4.9	8
85	Using dimethyl indocarbocyanide (DIC) as ion-pair agent for chromium speciation and its application in GFAAS analysis of water. Analytical Methods, 2012, 4, 2361.	2.7	7
86	A novel, environmentally friendly procedure for copper extraction using dimethylindodicarbocyanine dye and subsequent graphite furnace atomic absorption spectrometric detection. Analytical Methods, 2011, 3, 2412.	2.7	6
87	Spectrophotometric determination of mercury using vortex-assisted liquid-liquid microextraction. Turkish Journal of Chemistry, 2016, 40, 965-973.	1.2	6
88	2-(4-Dimethylaminostyryl)-1,3,3-trimethyl-2,3-dihydroindole as a New Reagent for the Extractive Spectrophotometric Determination of Selenium Analytical Sciences, 2000, 16, 973-974.	1.6	5
89	Sequential injection determination of orthophosphate as ion associate of 12-molybdophosphate with Astra Phloxine. Talanta, 2011, 84, 1355-1360.	5.5	5
90	Investigation of the Reaction of Gold(III) with 2â€[2â€(4â€Dimethylaminoâ€Phenyl)â€Vinyl]â€1,3,3â€Trimethylâ€3Hâ€Indolium. Application for Determination Journal of the Chinese Chemical Society, 2009, 56, 1168-1174.	n af£Gold.	4

#	Article	lF	CITATIONS
91	Determination of Cu(III) in semiconductor ceramics using cationic violet reagent. Mikrochimica Acta, 2009, 166, 145-150.	5.0	3
92	Spectrophotometric determination of [2-(2,6-dichloro-phenylamino)-phenyl]-acetic acid in pure form and in pharmaceuticals. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 74, 1209-1214.	3.9	3
93	Đ¡Đ¿ĐµĐ°Ñ,Ñ€Đ¾Ñ"Đ¾Ñ,Đ¾Đ¼ĐµÑ,Ñ€Đ¸Ñ‡Đ½Đµ Đ²Đ¸ĐĐ½Đ°Ñ‡ĐµĐ½Đ½Ñ•Đ°Đ½Đ°Đ»ÑŒĐ³Ñ–Đ½Ñj	[₽] Ð₩ĐμÑ,	,Đ¾ĐĐ¾Đ¼
94	Vibrational spectroscopic study of dehydroacetic acid and its cinnamoyl pyrone derivatives. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 146, 97-112.	3.9	2
95	Extractive separation, preconcentration, spectrophotometric and atomic absorption determination of gold as an ion associate with 2-[2-(4-methoxyphenylamino)vinyl]-1,3,3-trimethyl-3H-indolium chloride. Journal of Analytical Chemistry, 2011, 66, 800-806.	0.9	1
96	Determination of Thiamine as a Complex with 11-Molybdobismutho(III)phosphate in Sequential Injection Lab-at-valve System. Methods and Objects of Chemical Analysis, 2018, 13, 53-63.	0.4	1
97	A Novel, Donor-Active Solvent-Assisted Liquid-Phase Microextraction Procedure for Spectrometric Determination of Zinc. Journal of the Brazilian Chemical Society, 2013, , .	0.6	O

 $^{98 \}qquad \theta \breve{z}\theta \theta \eth^{1}\!/_{2}\theta \eth^{3}\!/_{4}\tilde{N}^{\dagger}^{\dagger}\!+_{9}\tilde{N}\theta \eth^{1}\!/_{2}\theta \mu \ \theta \eth^{2}\theta_{3}\theta \cdot \theta \eth^{1}\!/_{2}\theta \mathring{N}^{\dagger}^{\dagger}\theta \mu \theta \eth^{1}\!/_{2}\theta \eth^{1}\!/_{2}\theta \eth^{3}\!/_{4}\tilde{N}... \ \theta \eth^{0}\theta \eth^{0}\tilde{N}^{\dagger}^{\dagger}\theta_{3}\theta \eth^{1}\!/_{2}\theta \eth^{3}\!/_{4}\theta \eth^{1}\!/_{2}\theta \mu \theta \vartheta^{1}\!/_{2}\theta \mu \theta \vartheta^{1}\!/_{2}\theta \mathring{N}^{\dagger}^{\dagger}\theta - \theta \eth^{0}\tilde{N}^{\dagger}^{\dagger}\theta \partial^{0}\theta \partial^{$