Ian J Winfield

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/2058123/publications.pdf
Version: 2024-02-01

1 Phenological sensitivity to climate across taxa and trophic levels. Nature, 2016, 535, 241-245. 13.7 705Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrialenvironments. Global Change Biology, 2010, 16, 3304-3313.

$$
\begin{aligned}
& \text { Trait changes in a harvested population are driven by a dynamic tug-of-war between natural and } \\
& \text { harvest selection. Proceedings of the National Academy of Sciences of the United States of America, } \\
& 2007,104,15799-15804 \text {. }
\end{aligned}
$$

$$
3.3
$$

8 Fish diversity in <scp>E</scp>uropean lakes: geographical factors dominate over anthropogenic pressures. Freshwater Biology, 2013, 58, 1779-1793.
1.2

113

Four decades of opposing natural and human-induced artificial selection acting on Windermere pike
(Esox lucius). Ecology Letters, 2007, 10, 512-521.
(Esox lucius). Ecology Letters, 2007, 10, 512-521.
3.0

111

10 Temporal and spatial variation in distribution of fish environmental DNA in Englandâ ϵ^{TM} s largest lake.
Environmental DNA, 2019, 1, 26-39.
3.1

110
$-$
11 Invasive nonâ€native species likely to threaten biodiversity and ecosystems in the Antarctic Peninsula
region. Global Change Biology, 2020, 26, 2702-2716. region. Clobal Change Biology, 2020, 26, 2702-2716.
$4.2 \quad 110$

Do early warning indicators consistently predict nonlinear change in longâ€term ecological data?.
1.9

104 Journal of Applied Ecology, 2016, 53, 666-676.

The ideal free pike: 50 years of fitness-maximizing dispersal in Windermere. Proceedings of the Royal
1.2

100
Society B: Biological Sciences, 2006, 273, 2917-2924.

The cost of copepod reproduction: increased susceptibility to fish predation. Oecologia, 1983, 60, 406-411.

The behavioural basis of prey selection by underyearling bream (Abramis brama (L.)) and roach (Rutilus) Tj ETQq1 $1_{1.2} 0_{1} 84314_{8}$ rofBT $/ \mathrm{O}$

```
The Arctic charr (Salvelinus alpinus) populations of Windermere, UK: population trends associated
17 with eutrophication, climate change and increased abundance of roach (Rutilus rutilus).
0.4
72
Environmental Biology of Fishes, 2008, 83, 25-35.
```

21	Horizon scanning for invasive alien species with the potential to threaten biodiversity and human health on a Mediterranean island. Biological Invasions, 2019, 21, 2107-2125.	1.2	56
22	Stage-specific biomass overcompensation by juveniles in response to increased adult mortality in a wild fish population. Ecology, 2011, 92, 2175-2182.	1.5	55
23	Read counts from environmental DNA (eDNA) metabarcoding reflect fish abundance and biomass in drained ponds. Metabarcoding and Metagenomics, 0, 4, .	0.0	55
24	Food web deâ€synchronization in <scp>E</scp> ngland's largest lake: an assessment based on multiple phenological metrics. Clobal Change Biology, 2013, 19, 3568-3580.	4.2	54
25	Geographical patterns in the bodyâ€size structure of European lake fish assemblages along abiotic and biotic gradients. Journal of Biogeography, 2014, 41, 2221-2233.	1.4	50
26	Effects of Climate Change on Trait-Based Dynamics of a Top Predator in Freshwater Ecosystems. American Naturalist, 2014, 183, 243-256.	1.0	48
27	Quality assurance of hydroacoustic surveys: the repeatability of fish-abundance and biomass estimates in lakes within and between hydroacoustic systems. ICES Journal of Marine Science, 2003, 60, 486-492.	1.2	47

Body downsizing caused by non-consumptive social stress severely depresses population growth rate.
28 Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 843-851.
29 DENSITY DEPENDENCE AND DENSITY INDEPENDENCE IN THE DEMOGRAPHY AND DISPERSAL OF PIKE OVER
FOUR DECADES. Ecological Monographs, 2007, 77, 483-502. 45Assessment of fish populations in still waters using hydroacoustics and survey gill netting:
0.9

The Response of Young Roach Rutilus rutilus to Seasonal Changes in Abundance of Microcrustacean
Assessment of longâ€term changes in habitat availability for Arctic charr (<i> Salvelinus alpinus</i>) in
37 a temperate lake using oxygen profiles and hydroacoustic surveys. Freshwater Biology, 2008, 53, 393-402.

38	Pathogen-induced rapid evolution in a vertebrate life-history trait. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 35-41.	1.2	34
39	Harvest-induced disruptive selection increases variance in fitness-related traits. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 4163-4171.	1.2	33
40	Density-dependent effects as key drivers of intraspecific size structure of six abundant fish species in lakes across Europe. Canadian Journal of Fisheries and Aquatic Sciences, 2016, 73, 519-534.	0.7	33
41	Factors affecting prey selection by young bream Abramis brama and roach Rutilus rutilus: insights provided by parallel studies in laboratory and field. Journal of Applied Phycology, 1988, 21, 279-292.	1.5	32
42	Quantitative analysis of the importance of wind-induced circulation for the spatial structuring of planktonic populations. Freshwater Biology, 2004, 49, 1091-1102.	1.2	30
43	Biotic and abiotic influences on the recruitment of male perch in Windermere, U.K.. Journal of Fish Biology, 2004, 65, 1622-1642.	0.7	29

44 Six decades of pike and perch population dynamics in Windermere. Fisheries Research, 2011, 109, 131-139. 0.929

45	International Perspectives on the Effects of Climate Change on Inland Fisheries. Fisheries, 2016, 41, 399-405.	0.6	29
46	Northern pike (Esox lucius) in a warming lake: changes in population size and individual condition in relation to prey abundance. Hydrobiologia, 2008, 601, 29-40.	1.0	28
47	Assessment in two shallow lakes of a hydroacoustic system for surveying aquatic macrophytes. Hydrobiologia, 2007, 584, 111-119.	1.0	27
48	Fish hydroacoustic survey standardization: A step forward based on comparisons of methods and systems from vertical surveys of a large deep lake. Limnology and Oceanography: Methods, 2017, 15, 836-846.	1.0	27
49	An evaluation of methods for sampling macrophyte maximum colonisation depth in Loch Leven, Scotland. Aquatic Botany, 2009, 91, 75-81.	0.8	26
50	Long-term changes in the diet of pike (Esox lucius), the top aquatic predator in a changing Windermere. Freshwater Biology, 2012, 57, 373-383.	1.2	26
51	Recent invasion by a non-native cyprinid (common bream Abramis brama) is followed by major changes in the ecological quality of a shallow lake in southern Europe. Biological Invasions, 2013, 15, 2065-2079.	1.2	26
52	Threats To the Lake Fish Communities of the U.K. Arising From Eutrophication and Species Introductions. Animal Biology, 1991, 42, 233-242.	0.4	25
53	Designing a global assessment of climate change on inland fishes and fisheries: knowns and needs. Reviews in Fish Biology and Fisheries, 2017, 27, 393-409.	2.4	24

55

> Fish assemblages in deep Italian subalpine lakes: history and present status with an emphasis on non-native species. Hydrobiologia, 2018, 824, 255-270.
1.0

23
1.0 eutrophic lake. Hydrobiologia, 1990, 191, 223-231.

21
56 Predation pressure from above: observations on the activities of piscivorous birds at a shallow
21
Possible competitive interactions between overwintering tufted duck (Aythya fuligula (L.)) and fish
populations of Lough Neagh, Northern Ireland: evidence from diet studies. Hydrobiologia, 1994,
$279-280,377-386$.
$1.0 \quad 21$
populations of Lough Neagh, Northern Ireland: evidence from diet studies. Hydrobiologia, 1994,
279-280, 377-386. Journal of Fisheries Management, 2009, 29, 850-858.
0.5

21

Effects of fish predation on density and size spectra of prey fish communities in lakes. Canadian
Journal of Fisheries and Aquatic Sciences, $2016,73,506-518$.
$0.7 \quad 21$

60 Recreational fisheries in the UK: natural capital, ecosystem services, threats, and management.
Fisheries Science, 2016, 82, 203-212.
$0.7 \quad 20$

> The soundscape of Arctic Charr spawning grounds in lotic and lentic environments: can passive
> acoustic monitoring be used to detect spawning activities?. Bioacoustics, $2018,27,57-85$.
0.7

20

62 Changes in the fish community of Loch Leven: untangling anthropogenic pressures. Hydrobiologia, 2012, 681, 73-84.

Hydroacoustic quantification and assessment of spawning grounds of a lake salmonid in a eutrophicated water body. Ecological Informatics, 2015, 30, 235-240.

Distribution, characteristics and condition of Arctic charr (<i>Salvelinus alpinus</i>) spawning grounds in a differentially eutrophicated twinâ€basin lake. Ecology of Freshwater Fish, 2015, 24, 32-43.
0.7

17
6
65 Warming winters threaten peripheral Arctic charr populations of Europe. Climatic Change, 2020, 163,
$599-618$. 599-618.
1.7 17Interactions between the roach, Rutilus rutilus, and waterfowl populations of Lough Neagh,Northern Ireland. Environmental Biology of Fishes, 1992, 33, 207-214.

0.4
Assessment and conservation of whitefish (Coregonus lavaretus (L.)) in the U.K.. Advances in
69 Limnology, 2013, 64, 305-321.0.415Feeding ecology of the diving ducks pochard (Aythya ferina), tufted duck (A. fuligula), scaup (A. mania)1.214
Biology, 1994, 32, 467-477.
0.7 14$71 \begin{aligned} & \text { Investigation of first year biotic and abiotic influences on the recruitment of pike<i>Esox } \\ & \text { lucius</i>over } 48 \text { years in Windermere, U.K.. Journal of Fish Biology, 2009, 74, 2279-2298. }\end{aligned}$

 2013, 72, 22.

Fitness consequences of early life conditions and maternal size effects in a freshwater top predator. Journal of Animal Ecology, 2016, 85, 692-704.
1.3

Non-native Fish Occurrence and Biomass in 1943 Western Palearctic Lakes and Reservoirs and their Abiotic and Biotic Correlates. Ecosystems, 2018, 21, 395-409.

Effects of sizeâ€•and sexâ€selective harvesting: An integral projection model approach. Ecology and Evolution, 2019, 9, 12556-12570.

Recent Introductions of the Ruffe (Gymnocephalus cernuus) to Coregonus and Perca Lakes in Europe
77 and an Analysis of Their Natural Distributions in Sweden and Finland. Journal of Great Lakes Research, 1998, 24, 235-248.

Energyâ€based topâ€down and bottomâ€up relationships between fish community energy demand or
78 production and phytoplankton across lakes at a continental scale. Limnology and Oceanography,
2020, 65, 892-902.
79 How Does Climate Change Affect Emergent Properties of Aquatic Ecosystems?. Fisheries, 2021, 46, 423-441.

Multiâ€eriteria decision analysis of test endpoints for detecting the effects of endocrine active

80 substances in fish full life cycle tests. Integrated Environmental Assessment and Management, 2010, 6,
378-389.

81 Biotic and abiotic effects on cohort size distributions in fish. Oikos, 2013, 122, 835-844.

Fish stocking for recreational angling is culpable for the poor condition of many English lakes
designated for conservation purposes. Inland Waters, 2022, 12, 19-32.
$0.6 \quad 13$
1.6
1.2

12
83 Vertical heterogeneity in zooplankton community structure: a variance partitioning approach. ArchivFẨ1/4r Hydrobiologie, 2005, 164, 257-275.
1.1 10
84 Pathogens trigger top-down climate forcing on ecosystem dynamics. Oecologia, 2016, 181, 519-532.0.910
85 Size diversity and species diversity relationships in fish assemblages of Western Palearctic lakes. 2.1 10
Ecography, 2018, 41, 1064-1076.

The cultural importance and international recognition of the Arctic charr Salvelinus alpinus populations of Windermere, UK. Hydrobiologia, 2019, 840, 11-19.
1558-1571.

91 Complex and divergent histories gave rise to genomeâ€wide divergence patterns amongst European whitefish (<i>Coregonus lavaretus</i>). Journal of Evolutionary Biology, 2021, 34, 1954-1969.

Meeting across the river: from science to impact. Aquatic Conservation: Marine and Freshwater Ecosystems, 2010, 20, 607-610.
Two hearts are better than one: encouraging collaboration between freshwater fish conservation97 and freshwater fisheries management. Aquatic Conservation: Marine and Freshwater Ecosystems, 2016,0.9326, 1007-1012.Assessing the legacy of red mud pollution in a shallow freshwater lake: long-term chemical recoveryin the water column. Inland Waters, 2019, 9, 453-463.

Allelic losses and gains during translocations of a high conservation value fish, <scp> <i〉Coregonus lavaretus</i></scp>. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 2575-2585.
101 BEHAVIOUR, MIGRATIONS, DISTRIBUTION AND STOCKS OF STURGEONS IN THE VOLGA-CASPIAN BASIN -
Edited by R. P. Khodorevskaya, G. I. Ruban and D. S. Pavlov. Journal of Fish Biology, 2011, 78, 980-981.
0.72
ECOLOGY OF ATLANTIC SALMON AND BROWN TROUT: HABITAT AS A TEMPLATE FOR LIFE HISTORIES - Edited by B. Jonsson and N. Jonsson. Journal of Fish Biology, 2011, 79, 2108-2109. $0.7 \quad 2$Journal of Fish Biology, 2012, 81, 2095-2096.
0.7 2
Biological conservation of aquatic inland habitats: these are better days. Journal of Limnology, 2014, 0.3 2
104 73, .0.3First observations of anthropogenic underwater noise in a large multi-use lake. Journal of Limnology,2016, , .Assessment and conservation of gwyniad (Coregonus lavaretus (L.)) in Llyn Tegid, U.K.: persistence inintroduction. Advances in Limnology, 2013, 64, 363-376.

Allelic Losses and Gains During Translocations of a High Conservation Value Fish, \<i\>Coregonus lavaretus\</i\>. SSRN Electronic Journal, 0, , .

Can size distributions of European lake fish communities be predicted by trophic positions of their

