
Christine Alewell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2057862/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications, 2017, 8, 2013.	5.8	1,398
2	The new assessment of soil loss by water erosion in Europe. Environmental Science and Policy, 2015, 54, 438-447.	2.4	825
3	Land use and climate change impacts on global soil erosion by water (2015-2070). Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21994-22001.	3.3	622
4	Estimating the soil erosion cover-management factor at the European scale. Land Use Policy, 2015, 48, 38-50.	2.5	516
5	Rainfall erosivity in Europe. Science of the Total Environment, 2015, 511, 801-814.	3.9	443
6	Using the USLE: Chances, challenges and limitations of soil erosion modelling. International Soil and Water Conservation Research, 2019, 7, 203-225.	3.0	389
7	Global phosphorus shortage will be aggravated by soil erosion. Nature Communications, 2020, 11, 4546.	5.8	365
8	Soil erodibility in Europe: A high-resolution dataset based on LUCAS. Science of the Total Environment, 2014, 479-480, 189-200.	3.9	354
9	Soil erosion modelling: A global review and statistical analysis. Science of the Total Environment, 2021, 780, 146494.	3.9	261
10	Modelling the effect of support practices (P-factor) on the reduction of soil erosion by water at European scale. Environmental Science and Policy, 2015, 51, 23-34.	2.4	240
11	Spatial and temporal variability of rainfall erosivity factor for Switzerland. Hydrology and Earth System Sciences, 2012, 16, 167-177.	1.9	199
12	Fallout 210Pb as a soil and sediment tracer in catchment sediment budget investigations: A review. Earth-Science Reviews, 2014, 138, 335-351.	4.0	194
13	Sulphate, Nitrogen and Base Cation Budgets at 21 Forested Catchments in Canada, the United States and Europe. Environmental Monitoring and Assessment, 2005, 109, 1-36.	1.3	176
14	Biological residues define the ice nucleation properties of soil dust. Atmospheric Chemistry and Physics, 2011, 11, 9643-9648.	1.9	173
15	Mapping monthly rainfall erosivity in Europe. Science of the Total Environment, 2017, 579, 1298-1315.	3.9	142
16	Towards estimates of future rainfall erosivity in Europe based on REDES and WorldClim datasets. Journal of Hydrology, 2017, 548, 251-262.	2.3	132
17	Soil Conservation in Europe: Wish or Reality?. Land Degradation and Development, 2016, 27, 1547-1551.	1.8	125
18	The usefulness of 137Cs as a tracer for soil erosion assessment: A critical reply to Parsons and Foster (2011). Earth-Science Reviews, 2013, 127, 300-307.	4.0	113

#	Article	IF	CITATIONS
19	Biogeochemical indicators of peatland degradation – a case study of a temperate bog in northern Germany. Biogeosciences, 2015, 12, 2861-2871.	1.3	97
20	Assessing soil erosion in Europe based on data collected through a European network. Soil Science and Plant Nutrition, 2014, 60, 15-29.	0.8	95
21	Improving the treatment efficiency of constructed wetlands with zeolite-containing filter sands. Bioresource Technology, 2011, 102, 937-941.	4.8	92
22	Tracking water pathways in steep hillslopes by δ180 depth profiles of soil water. Journal of Hydrology, 2014, 519, 340-352.	2.3	89
23	Suitability of 239+240Pu and 137Cs as tracers for soil erosion assessment in mountain grasslands. Chemosphere, 2014, 103, 274-280.	4.2	84
24	Reduction processes in forest wetlands: Tracking down heterogeneity of source/sink functions with a combination of methods. Soil Biology and Biochemistry, 2006, 38, 1028-1039.	4.2	82
25	An attempt to estimate tolerable soil erosion rates by matching soil formation with denudation in Alpine grasslands. Journal of Soils and Sediments, 2015, 15, 1383-1399.	1.5	82
26	Climate and land-use changes affecting river sediment and brown trout in alpine countries—a review. Environmental Science and Pollution Research, 2009, 16, 232-242.	2.7	79
27	Soil erosion modelling: A bibliometric analysis. Environmental Research, 2021, 197, 111087.	3.7	78
28	Soil erodibility estimation using LUCAS point survey data of Europe. Environmental Modelling and Software, 2012, 30, 143-145.	1.9	73
29	Stable carbon isotopes as indicators for environmental change in palsa peats. Biogeosciences, 2011, 8, 1769-1778.	1.3	69
30	Effective retention of litter-derived dissolved organic carbon in organic layers. Soil Biology and Biochemistry, 2009, 41, 1066-1074.	4.2	68
31	Effects of reduced atmospheric deposition on soil solution chemistry and elemental contents of spruce needles in NE—Bavaria, Germany. Journal of Plant Nutrition and Soil Science, 2000, 163, 509-516.	1.1	66
32	Interrill erosion at disturbed alpine sites: Effects of plant functional diversity and vegetation cover. Basic and Applied Ecology, 2010, 11, 619-626.	1.2	66
33	Methods to describe and predict soil erosion in mountain regions. Landscape and Urban Planning, 2008, 88, 46-53.	3.4	64
34	Quantitative sediment source attribution with compound-specific isotope analysis in a C3 plant-dominated catchment (central Switzerland). Biogeosciences, 2016, 13, 1587-1596.	1.3	63
35	Freezing nucleation apparatus puts new slant on study of biological ice nucleators in precipitation. Atmospheric Measurement Techniques, 2014, 7, 129-134.	1.2	62
36	Use of objective criteria for the assessment of biogeochemical ecosystem models. Ecological Modelling, 1998, 107, 213-224.	1.2	61

#	Article	IF	CITATIONS
37	Monthly Rainfall Erosivity: Conversion Factors for Different Time Resolutions and Regional Assessments. Water (Switzerland), 2016, 8, 119.	1.2	60
38	Storm pulses and varying sources of hydrologic carbon export from a mountainous watershed. Journal of Hydrology, 2012, 440-441, 90-101.	2.3	59
39	Atmospheric ice nucleators active ≥ â^'12 °C can be quantified on PM ₁₀ filters. Atmospheric Measurement Techniques, 2012, 5, 321-327.	1.2	58
40	Speciation of vanadium in Chinese cabbage (Brassica rapa L.) and soils in response to different levels of vanadium in soils and cabbage growth. Chemosphere, 2014, 111, 89-95.	4.2	54
41	Title is missing!. Biogeochemistry, 1999, 44, 281-299.	1.7	53
42	Atmospheric ice nuclei at the high-altitude observatory Jungfraujoch, Switzerland. Tellus, Series B: Chemical and Physical Meteorology, 2022, 67, 25014.	0.8	53
43	Patterns of stable S isotopes in a forested catchment as indicators for biological S turnover. Biogeochemistry, 1999, 47, 319-333.	1.7	51
44	Degradation changes stable carbon isotope depth profiles in palsa peatlands. Biogeosciences, 2014, 11, 3369-3380.	1.3	51
45	239+240 Pu from "contaminant―to soil erosion tracer: Where do we stand?. Earth-Science Reviews, 2017, 172, 107-123.	4.0	51
46	Evidence of microbial control of Hg ⁰ emissions from uncontaminated terrestrial soils. Journal of Plant Nutrition and Soil Science, 2008, 171, 200-209.	1.1	50
47	Soil sealing and unsealing: State of the art and examples. Land Degradation and Development, 2018, 29, 2015-2024.	1.8	50
48	Co-regulation of redox processes in freshwater wetlands as a function of organic matter availability?. Science of the Total Environment, 2008, 404, 335-342.	3.9	49
49	Importance of vegetation, topography and flow paths for water transit times of base flow in alpine headwater catchments. Hydrology and Earth System Sciences, 2013, 17, 1661-1679.	1.9	48
50	lce nucleation active particles are efficiently removed by precipitating clouds. Scientific Reports, 2015, 5, 16433.	1.6	47
51	Mapping spatio-temporal dynamics of the cover and management factor (C-factor) for grasslands in Switzerland. Remote Sensing of Environment, 2018, 211, 89-104.	4.6	47
52	Predicting Reversibility of Acidification: The European Sulfur Story. Water, Air, and Soil Pollution, 2001, 130, 1271-1276.	1.1	46
53	Novel application of Compound Specific Stable Isotope (CSSI) techniques to investigate on-site sediment origins across arable fields. Geoderma, 2018, 316, 19-26.	2.3	45
54	Regionalization of monthly rainfall erosivity patterns in Switzerland. Hydrology and Earth System Sciences, 2016, 20, 4359-4373.	1.9	44

#	Article	IF	CITATIONS
55	Mercury evasion from a boreal peatland shortens the timeline for recovery from legacy pollution. Scientific Reports, 2017, 7, 16022.	1.6	44
56	Objectâ€oriented soil erosion modelling: A possible paradigm shift from potential to actual risk assessments in agricultural environments. Land Degradation and Development, 2018, 29, 1270-1281.	1.8	44
57	Use of a 137Cs re-sampling technique to investigate temporal changes in soil erosion and sediment mobilisation for a small forested catchment in southern Italy. Journal of Environmental Radioactivity, 2014, 138, 137-148.	0.9	43
58	Stable carbon isotopes as an indicator for soil degradation in an alpine environment (Urseren Valley,) Tj ETQq0 0	0 rgBT /Ov	erlock 10 Tf 41
59	On the measurement of alpine soil erosion. Catena, 2012, 91, 63-71.	2.2	41
60	Fractionation factors for stable isotopes of N and O during N2O reduction in soil depend on reaction rate constant. Rapid Communications in Mass Spectrometry, 2007, 21, 846-850.	0.7	40
61	Evaluation and application of a portable rainfall simulator on subalpine grassland. Catena, 2012, 91, 56-62.	2.2	39
62	Erosion-induced changes in soil biogeochemical and microbiological properties in Swiss Alpine grasslands. Soil Biology and Biochemistry, 2014, 69, 382-392.	4.2	39
63	Apparent translatory flow in groundwater recharge and runoff generation. Journal of Hydrology, 2002, 265, 195-211.	2.3	37
64	Combined use of stable isotopes and fallout radionuclides as soil erosion indicators in a forested mountain site, South Korea. Biogeosciences, 2013, 10, 5627-5638.	1.3	37
65	A multi-radionuclide approach to evaluate the suitability of 239+240Pu as soil erosion tracer. Science of the Total Environment, 2016, 566-567, 1489-1499.	3.9	36
66	Organic matter dynamics and stable isotope signature as tracers of the sources of suspended sediment. Biogeosciences, 2012, 9, 1985-1996.	1.3	35
67	Pyrogenic Carbon Contributes Substantially to Carbon Storage in Intact and Degraded Northern Peatlands. Land Degradation and Development, 2018, 29, 2082-2091.	1.8	35
68	Effect of permafrost on the formation of soil organic carbon pools and their physical–chemical properties in the Eastern Swiss Alps. Catena, 2013, 110, 70-85.	2.2	34
69	Modelling Deposition and Erosion rates with RadioNuclides (MODERN) – Part 1: A new conversion model to derive soil redistribution rates from inventories of fallout radionuclides. Journal of Environmental Radioactivity, 2016, 162-163, 45-55.	0.9	34
70	lce nucleators, bacterial cells and <i>Pseudomonas syringae</i> in precipitation at Jungfraujoch. Biogeosciences, 2017, 14, 1189-1196.	1.3	33
71	Calcium Loss in Central European Forest Soils. Soil Science Society of America Journal, 2004, 68, 588-595.	1.2	32

Cesiumâ€137â€based erosionâ€rate determination of a steep mountainous region. Journal of Plant Nutrition
and Soil Science, 2009, 172, 615-622.

#	Article	IF	CITATIONS
73	Monthly RUSLE soil erosion risk of Swiss grasslands. Journal of Maps, 2019, 15, 247-256.	1.0	31
74	Plutonium aided reconstruction of caesium atmospheric fallout in European topsoils. Scientific Reports, 2020, 10, 11858.	1.6	31
75	Measurement of spatial and temporal fine sediment dynamics in a small river. Hydrology and Earth System Sciences, 2012, 16, 1501-1515.	1.9	30
76	Estimation of soil redistribution rates due to snow cover related processes in a mountainous area (Valle d'Aosta, NW Italy). Hydrology and Earth System Sciences, 2012, 16, 517-528.	1.9	30
77	Impact of Fish Farming on Phosphorus in Reservoir Sediments. Scientific Reports, 2015, 5, 16617.	1.6	29
78	Characterizing the Redox Status in Three Different Forested Wetlands with Geochemical Data. Environmental Science & Technology, 2006, 40, 7609-7615.	4.6	27
79	The effect of permafrost on time-split soil erosion using radionuclides (137Cs, 239 + 240Pu, meteoric) T	j ETQq1 1 1.5	l 0.784314 rg 27
80	Mercury emission from industrially contaminated soils in relation to chemical, microbial, and meteorological factors. Environmental Pollution, 2019, 250, 944-952.	3.7	27
81	Different effect of drying on the fluxes of dissolved organic carbon and nitrogen from a Norway spruce forest floor. Journal of Plant Nutrition and Soil Science, 2000, 163, 517-521.	1.1	26
82	Process identification of soil erosion in steep mountain regions. Hydrology and Earth System Sciences, 2010, 14, 675-686.	1.9	25
83	Modelling Deposition and Erosion rates with RadioNuclides (MODERN) – Part 2: A comparison of different models to convert 239+240 Pu inventories into soil redistribution rates at unploughed sites. Journal of Environmental Radioactivity, 2016, 162-163, 97-106.	0.9	25
84	Total bacterial number concentration in free tropospheric air above the Alps. Aerobiologia, 2013, 29, 153-159.	0.7	24
85	A dual-inlet, single detector relaxed eddy accumulation system for long-term measurement of mercury flux. Atmospheric Measurement Techniques, 2016, 9, 509-524.	1.2	24
86	Reply to "The new assessment of soil loss by water erosion in Europe. Panagos P. et al., 2015 Environ. Sci. Policy 54, 438–447—A response―by Evans and Boardman [Environ. Sci. Policy 58, 11–15]. Environmental Science and Policy, 2016, 59, 53-57.	2.4	24
87	New type of evidence for secondary ice formation at around â~'15 °C in mixed-phase clouds. Atmospheric Chemistry and Physics, 2019, 19, 877-886.	1.9	24
88	A bottom-up quantification of foliar mercury uptake fluxes across Europe. Biogeosciences, 2020, 17, 6441-6456.	1.3	24
89	High temporal resolution of ion fluxes in semi-natural ecosystems – gain of information or waste of resources?. Biogeochemistry, 2004, 69, 19-35.	1.7	23
90	Temperature sensitivity of young and old soil carbon – Same soil, slight differences in 13C natural abundance method, inconsistent results. Soil Biology and Biochemistry, 2008, 40, 2703-2705.	4.2	23

#	Article	IF	CITATIONS
91	Soil formation and weathering in a permafrost environment of the Swiss Alps: a multiâ€parameter and nonâ€steadyâ€state approach. Earth Surface Processes and Landforms, 2017, 42, 814-835.	1.2	23
92	Evasion of Elemental Mercury from a Boreal Peatland Suppressed by Long-Term Sulfate Addition. Environmental Science and Technology Letters, 2014, 1, 421-425.	3.9	21
93	Downstream alteration of the composition and biodegradability of particulate organic carbon in a mountainous, mixed land-use watershed. Biogeochemistry, 2015, 122, 79-99.	1.7	21
94	Application of in-situ measurement to determine 137Cs in the Swiss Alps. Journal of Environmental Radioactivity, 2010, 101, 369-376.	0.9	20
95	Soil erosion by snow gliding – a first quantification attempt in a subalpine area in Switzerland. Hydrology and Earth System Sciences, 2014, 18, 3763-3775.	1.9	20
96	Effects of organic sulfur compounds on extraction and determination of inorganic sulfate. Plant and Soil, 1993, 149, 141-144.	1.8	19
97	Changes in the δ34S ratio of pore-water sulfate in incubated Sphagnum peat. Wetlands, 2000, 20, 62-69.	0.7	19
98	Reply to the comment on "Rainfall erosivity in Europe―by Auerswald et al Science of the Total Environment, 2015, 532, 853-857.	3.9	19
99	Calculating carbon changes in peat soils drained for forestry with four different profile-based methods. Forest Ecology and Management, 2016, 381, 29-36.	1.4	19
100	Plantâ€compositional effects on surface runoff and sediment yield in subalpine grassland. Journal of Plant Nutrition and Soil Science, 2009, 172, 777-788.	1.1	18
101	Influence of soil physical parameters on removal efficiency and hydraulic conductivity of vertical flow constructed wetlands. Ecological Engineering, 2014, 68, 124-132.	1.6	18
102	Physiological and climate controls on foliar mercury uptake by European tree species. Biogeosciences, 2022, 19, 1335-1353.	1.3	18
103	Palsa Uplift Identified by Stable Isotope Depth Profiles and Relation of δ ¹⁵ N to C/N Ratio. Permafrost and Periglacial Processes, 2017, 28, 485-492.	1.5	17
104	Spatio-temporal pattern of soil degradation in a Swiss Alpine grassland catchment. Remote Sensing of Environment, 2019, 235, 111441.	4.6	17
105	Soil erosion in an avalanche release site (Valle d'Aosta: Italy): towards a winter factor for RUSLE in the Alps. Natural Hazards and Earth System Sciences, 2014, 14, 1761-1771.	1.5	17
106	Reply to the comment on "The new assessment of soil loss by water erosion in Europe―by Fiener & Auerswald. Environmental Science and Policy, 2016, 57, 143-150.	2.4	16
107	Predicting abundance and variability of ice nucleating particles in precipitation at the high-altitude observatory Jungfraujoch. Atmospheric Chemistry and Physics, 2016, 16, 8341-8351.	1.9	16
108	Modelling Hot Spots of Soil Loss by Wind Erosion (<scp>SoLoWind</scp>) in Western Saxony, Germany. Land Degradation and Development, 2017, 28, 1100-1112.	1.8	15

#	Article	IF	CITATIONS
109	Lateral carbon transfer from erosion in noncroplands matters. Global Change Biology, 2018, 24, 3283-3284.	4.2	15
110	Switch of fungal to bacterial degradation in natural, drained and rewetted oligotrophic peatlands reflected in <i>î</i> ¹⁵ N and fatty acid composition. Soil, 2020, 6, 299-313.	2.2	15
111	Sampling soil and sediment depth profiles at a fine resolution with a new device for determining physical, chemical and biological properties: the Fine Increment Soil Collector (FISC). Journal of Soils and Sediments, 2014, 14, 630-636.	1.5	14
112	Plants or bacteria? 130 years of mixed imprints in Lake Baldegg sediments (Switzerland), as revealed by compound-specific isotope analysis (CSIA) and biomarker analysis. Biogeosciences, 2019, 16, 2131-2146.	1.3	14
113	Understanding the effects of early degradation on isotopic tracers: implications for sediment source attribution using compound-specific isotope analysis (CSIA). Biogeosciences, 2020, 17, 2169-2180.	1.3	14
114	Investigating sulfate sorption and desorption of acid forest soils with special consideration of soil structure. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1998, 161, 73-80.	0.4	13
115	Identifying Soil Erosion Processes in Alpine Grasslands on Aerial Imagery with a U-Net Convolutional Neural Network. Remote Sensing, 2020, 12, 4149.	1.8	12
116	Compound-specific isotope analysis with nested sampling approach detects spatial and temporal variability in the sources of suspended sediments in a Scottish mesoscale catchment. Science of the Total Environment, 2021, 755, 142916.	3.9	12
117	δ ¹⁵ N natural abundance may directly disclose perturbed soil when related to C:N ratio. Rapid Communications in Mass Spectrometry, 2013, 27, 1101-1104.	0.7	11
118	Filling the European blank spot—Swiss soil erodibility assessment with topsoil samples. Journal of Plant Nutrition and Soil Science, 2018, 181, 737-748.	1.1	11
119	An Isotopic Dilution Approach for Quantifying Mercury Lability in Soils. Environmental Science and Technology Letters, 2017, 4, 556-561.	3.9	10
120	Export of ice nucleating particles from a watershed. Royal Society Open Science, 2017, 4, 170213.	1.1	10
121	Sorption kinetics of isotopically labelled divalent mercury (196Hg2+) in soil. Chemosphere, 2019, 221, 193-202.	4.2	10
122	Soil carbon loss from drained agricultural peatland after coverage with mineral soil. Science of the Total Environment, 2021, 800, 149498.	3.9	10
123	Respiration of nitrous oxide in suboxic soil. European Journal of Soil Science, 2009, 60, 332-337.	1.8	9
124	Water and solute dynamics during rainfall events in headwater catchments in the Central Swiss Alps under the influence of green alder shrubs and wetland soils. Ecohydrology, 2016, 9, 950-963.	1.1	9
125	Towards parameterising atmospheric concentrations of ice-nucleating particles active at moderate supercooling. Atmospheric Chemistry and Physics, 2021, 21, 657-664.	1.9	9
126	A conceptual-model-based sediment connectivity assessment for patchy agricultural catchments. Hydrology and Earth System Sciences, 2022, 26, 3753-3770.	1.9	9

#	Article	IF	CITATIONS
127	Measured and modelled retention of inorganic sulfur in soils and subsoils (Harz Mountains,) Tj ETQq1 1 0.78431	4 rgBT P:1	/Overlock 10 Ti
128	Artificial steps mitigate the effect of fine sediment on the survival of brown trout embryos in a heavily modified river. Freshwater Biology, 2014, 59, 544-556.	1.2	8
129	Characterizing ecosystem-driven chemical composition differences in natural and drained Finnish bogs using pyrolysis-GC/MS. Organic Geochemistry, 2022, 165, 104351.	0.9	7
130	Determination of <i>δ</i> ¹⁸ O in soils: measuring conditions and a potential application. Rapid Communications in Mass Spectrometry, 2009, 23, 313-318.	0.7	6
131	Decision support for the selection of reference sites using ¹³⁷ Cs as a soil erosion tracer. Soil, 2017, 3, 113-122.	2.2	6
132	SPATIAL VARIABILITY OF SULFATE ISOTHERMS IN FOREST SOILS AT DIFFERENT SCALES AND ITS IMPLICATIONS FOR THE MODELING OF SOIL SULFATE FLUXES. Soil Science, 2000, 165, 848-857.	0.9	6
133	Calcium Induces Long-Term Legacy Effects in a Subalpine Ecosystem. PLoS ONE, 2012, 7, e51818.	1.1	6
134	Sulphur behaviour in forest soils near the largest SO2 emitter in northern Europe. Applied Geochemistry, 2007, 22, 1095-1104.	1.4	5
135	Soil amendments promote denitrification in restored wetlands. Restoration Ecology, 2018, 26, 294-302.	1.4	5
136	Forest Development in the European Alps and Potential Consequences on Hydrological Regime. Ecological Studies, 2010, , 111-126.	0.4	4
137	Metal biogeochemistry in constructed wetlands based on fluviatile sand and zeolite- and clinopyroxene-dominated lava sand. Scientific Reports, 2017, 7, 2981.	1.6	4
138	Phosphorus retention in constructed wetlands enhanced by zeolite―and clinopyroxeneâ€dominated lava sand. Hydrological Processes, 2021, 35, e14040.	1.1	4
139	Investigating causal factors of shallow landslides in grassland regions of Switzerland. Natural Hazards and Earth System Sciences, 2021, 21, 3421-3437.	1.5	4
140	The interplay between atmospheric deposition and soil dynamics of mercury in Swiss and Chinese boreal forests: A comparison study. Environmental Pollution, 2022, , 119483.	3.7	4
141	δ ¹⁵ N natural abundance in permafrost soil indicates impact of fire on nitrogen cycle. Rapid Communications in Mass Spectrometry, 2011, 25, 661-664.	0.7	3
142	Investigating the influence of instrumental parameters and chemical composition on pyrolysis efficiency of peat. Communications in Soil Science and Plant Analysis, 2020, 51, 1572-1581.	0.6	3
143	Accumulation of C4â€carbon from Miscanthus in organicâ€matterâ€rich soils. GCB Bioenergy, 2021, 13, 1319-1328.	2.5	3
144	Change of permanent grasslands extent (1996-2015) and national grassland dataset of Switzerland. Data in Brief, 2018, 20, 1992-1998.	0.5	2

#	Article	IF	CITATIONS
145	Carbon budget response of an agriculturally used fen to different soil moisture conditions. Agricultural and Forest Meteorology, 2021, 300, 108319.	1.9	2
146	Heating up a cold case: Applications of analytical pyrolysis GC/MS to assess molecular biomarkers in peat. Advances in Agronomy, 2021, , 115-159.	2.4	2
147	Effects of reduced atmospheric deposition on soil solution chemistry and elemental contents of spruce needles in NE—Bavaria, Germany. , 2000, 163, 509.		2
148	Stable isotopes (δ13C, δ15N) and biomarkers as indicators of the hydrological regime of fens in a European east–west transect. Science of the Total Environment, 2022, 838, 156603.	3.9	2
149	Arsenic in Wines and Beers from European Markets. , 2015, , 509-515.		1
150	Occurrence and erosion susceptibility of German Pelosols and international equivalents [#] . Journal of Plant Nutrition and Soil Science, 0, , .	1.1	1