Xianliang Fu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2057701/publications.pdf

Version: 2024-02-01

99	7,443	49	85
papers	citations	h-index	g-index
100	100	100	7783 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3. Applied Catalysis B: Environmental, 2014, 150-151, 564-573.	20.2	572
2	Hydrogen Production over Titaniaâ€Based Photocatalysts. ChemSusChem, 2010, 3, 681-694.	6.8	404
3	Design of a direct Z-scheme photocatalyst: Preparation and characterization of Bi2O3/g-C3N4 with high visible light activity. Journal of Hazardous Materials, 2014, 280, 713-722.	12.4	344
4	Photocatalytic reforming of biomass: A systematic study of hydrogen evolution from glucose solution. International Journal of Hydrogen Energy, 2008, 33, 6484-6491.	7.1	301
5	Coupled systems for selective oxidation of aromatic alcohols to aldehydes and reduction of nitrobenzene into aniline using CdS/g-C3N4 photocatalyst under visible light irradiation. Applied Catalysis B: Environmental, 2014, 158-159, 382-390.	20.2	255
6	In situ preparation of novel p–n junction photocatalyst BiOI/(BiO)2CO3 with enhanced visible light photocatalytic activity. Journal of Hazardous Materials, 2012, 239-240, 316-324.	12.4	204
7	Electronic structure and optical properties of Ag3PO4 photocatalyst calculated by hybrid density functional method. Applied Physics Letters, $2011, 99, \ldots$	3.3	191
8	Photocatalytic performance of tetragonal and cubic \hat{l}^2 -In2S3 for the water splitting under visible light irradiation. Applied Catalysis B: Environmental, 2010, 95, 393-399.	20.2	175
9	Significantly enhanced visible-light photocatalytic activity of g-C3N4 via ZnO modification and the mechanism study. Journal of Molecular Catalysis A, 2013, 368-369, 9-15.	4.8	162
10	Ag3PO4/ZnO: An efficient visible-light-sensitized composite with its application in photocatalytic degradation of Rhodamine B. Materials Research Bulletin, 2013, 48, 106-113.	5.2	157
11	What is the transfer mechanism of photogenerated carriers for the nanocomposite photocatalyst Ag ₃ PO ₄ /g-C ₃ N ₄ , band–band transfer or a direct Z-scheme?. Physical Chemistry Chemical Physics, 2015, 17, 11577-11585.	2.8	155
12	Selective oxidation of aromatic alcohols to aromatic aldehydes by BN/metal sulfide with enhanced photocatalytic activity. Applied Catalysis B: Environmental, 2016, 182, 356-368.	20.2	144
13	Ultra-low content of Pt modified CdS nanorods: one-pot synthesis and high photocatalytic activity for H ₂ production under visible light. Journal of Materials Chemistry A, 2015, 3, 23732-23742.	10.3	137
14	Fabrication, characterization and mechanism of a novel Z-scheme photocatalyst NaNbO3/WO3 with enhanced photocatalytic activity. Dalton Transactions, 2013, 42, 10759.	3.3	132
15	Photocatalytic reforming of glycerol for H ₂ evolution on Pt/TiO ₂ : fundamental understanding the effect of co-catalyst Pt and the Pt deposition route. Journal of Materials Chemistry A, 2015, 3, 2271-2282.	10.3	129
16	Hydroxide ZnSn(OH)6: A promising new photocatalyst for benzene degradation. Applied Catalysis B: Environmental, 2009, 91, 67-72.	20.2	122
17	Efficient photocatalytic H2 evolution, CO2 reduction and N2 fixation coupled with organic synthesis by cocatalyst and vacancies engineering. Applied Catalysis B: Environmental, 2021, 285, 119789.	20.2	120
18	Preparation and characterization of direct Z-scheme photocatalyst Bi2O3/NaNbO3 and its reaction mechanism. Applied Surface Science, 2014, 292, 357-366.	6.1	119

#	Article	IF	CITATIONS
19	Ball milled h-BN: An efficient holes transfer promoter to enhance the photocatalytic performance of TiO2. Journal of Hazardous Materials, 2013, 244-245, 102-110.	12.4	116
20	One-step synthesis of 2D/2D-3D NiS/Zn3In2S6 hierarchical structure toward solar-to-chemical energy transformation of biomass-relevant alcohols. Applied Catalysis B: Environmental, 2020, 266, 118617.	20.2	115
21	One-pot hydrothermal synthesis of highly efficient SnOx/Zn2SnO4 composite photocatalyst for the degradation of methyl orange and gaseous benzene. Applied Catalysis B: Environmental, 2017, 200, 19-30.	20.2	112
22	Hydrothermal synthesis, characterization, and photocatalytic properties of Zn2SnO4. Journal of Solid State Chemistry, 2009, 182, 517-524.	2.9	108
23	Effective use of photogenerated electrons and holes in a system: Photocatalytic selective oxidation of aromatic alcohols to aldehydes and hydrogen production. Journal of Catalysis, 2018, 367, 159-170.	6.2	102
24	Efficient utilization of photogenerated electrons and holes for photocatalytic selective organic syntheses in one reaction system using a narrow band gap CdS photocatalyst. Green Chemistry, 2016, 18, 3628-3639.	9.0	101
25	V2O5/Al2O3 composite photocatalyst: Preparation, characterization, and the role of Al2O3. Chemical Engineering Journal, 2012, 180, 170-177.	12.7	95
26	In situ photodeposition of MoS _x on CdS nanorods as a highly efficient cocatalyst for photocatalytic hydrogen production. Journal of Materials Chemistry A, 2017, 5, 15287-15293.	10.3	93
27	Simultaneous dehydrogenation and hydrogenolysis of aromatic alcohols in one reaction system via visible-light-driven heterogeneous photocatalysis. Journal of Catalysis, 2018, 357, 247-256.	6.2	91
28	Effect of different solvent on the photocatalytic activity of ZnIn2S4 for selective oxidation of aromatic alcohols to aromatic aldehydes under visible light irradiation. Applied Surface Science, 2016, 384, 161-174.	6.1	90
29	Synergistic effect of photocatalysis and thermocatalysis for selective oxidation of aromatic alcohols to aromatic aldehydes using Zn3In2S6@ZnO composite. Applied Catalysis B: Environmental, 2017, 218, 420-429.	20.2	90
30	Intimately Contacted Ni2P on CdS Nanorods for Highly Efficient Photocatalytic H2 Evolution: New Phosphidation Route and the Interfacial Separation Mechanism of Charge Carriers. Applied Catalysis B: Environmental, 2021, 281, 119443.	20.2	90
31	Insight into the Transfer Mechanism of Photogenerated Carriers for WO ₃ /TiO ₂ Heterojunction Photocatalysts: Is It the Transfer of Band–Band or Z-Scheme? Why?. Journal of Physical Chemistry C, 2018, 122, 26326-26336.	3.1	88
32	Fabrication and characterization of novel Z-scheme photocatalyst WO3/g-C3N4 with high efficient visible light photocatalytic activity. Materials Chemistry and Physics, 2015, 149-150, 512-521.	4.0	86
33	Insight into the Transfer Mechanisms of Photogenerated Carriers for Heterojunction Photocatalysts with the Analogous Positions of Valence Band and Conduction Band: A Case Study of ZnO/TiO ₂ . Journal of Physical Chemistry C, 2018, 122, 15409-15420.	3.1	84
34	Rational synthesis of MnxCd1-xS for enhanced photocatalytic H2 evolution: Effects of S precursors and the feed ratio of Mn/Cd on its structure and performance. Journal of Colloid and Interface Science, 2019, 535, 469-480.	9.4	80
35	Chalcogenide photocatalysts for selective oxidation of aromatic alcohols to aldehydes using O2 and visible light: A case study of CdIn2S4, CdS and In2S3. Chemical Engineering Journal, 2018, 348, 966-977.	12.7	79
36	Photocatalytic degradation of benzene over different morphology BiPO4: Revealing the significant contribution of high–energy facets and oxygen vacancies. Applied Catalysis B: Environmental, 2019, 243, 780-789.	20.2	78

#	Article	IF	Citations
37	Urea-based hydrothermal growth, optical and photocatalytic properties of single-crystalline In(OH)3 nanocubes. Journal of Colloid and Interface Science, 2008, 325, 425-431.	9.4	75
38	Trace Amount of SnO ₂ -Decorated ZnSn(OH) ₆ as Highly Efficient Photocatalyst for Decomposition of Gaseous Benzene: Synthesis, Photocatalytic Activity, and the Unrevealed Synergistic Effect between ZnSn(OH) ₆ and SnO ₂ . ACS Catalysis, 2016, 6, 957-968.	11.2	74
39	Solvothermal synthesis of CdIn2S4 photocatalyst for selective photosynthesis of organic aromatic compounds under visible light. Scientific Reports, 2017, 7, 27.	3.3	72
40	Selective oxidation of aromatic alcohols to corresponding aromatic aldehydes using In2S3 microsphere catalyst under visible light irradiation. Chemical Engineering Journal, 2014, 245, 107-116.	12.7	71
41	Controlled synthesis of Sn-based oxides via a hydrothermal method and their visible light photocatalytic performances. RSC Advances, 2017, 7, 27024-27032.	3.6	65
42	Effects of preparation method on the microstructure and photocatalytic performance of ZnSn(OH)6. Applied Catalysis B: Environmental, 2014, 148-149, 532-542.	20.2	64
43	The role of ball milled h-BN in the enhanced photocatalytic activity: A study based on the model of ZnO. Applied Surface Science, 2013, 280, 828-835.	6.1	60
44	Photocatalytic destruction of air pollutants with vacuum ultraviolet (VUV) irradiation. Catalysis Today, 2011, 175, 310-315.	4.4	59
45	MoS2/Zn3ln2S6 composite photocatalysts for enhancement of visible light-driven hydrogen production from formic acid. Chinese Journal of Catalysis, 2021, 42, 193-204.	14.0	55
46	Photocatalytic reforming of glucose over La doped alkali tantalate photocatalysts for H2 production. Catalysis Communications, 2010, 12, 184-187.	3.3	53
47	Photocatalytic reforming of C3-polyols for H2 production. Applied Catalysis B: Environmental, 2011, 106, 681-688.	20.2	53
48	Noble metal-free 0D–1D NiS _x /CdS nanocomposites toward highly efficient photocatalytic contamination removal and hydrogen evolution under visible light. Dalton Transactions, 2018, 47, 12671-12683.	3.3	53
49	Integrating photonic bandgaps with surface plasmon resonance for the enhancement of visible-light photocatalytic performance. Journal of Materials Chemistry A, 2015, 3, 23501-23511.	10.3	51
50	A new phosphidation route for the synthesis of NiP and their cocatalytic performances for photocatalytic hydrogen evolution over g-C3N4. Journal of Energy Chemistry, 2020, 48, 241-249.	12.9	51
51	Effect of Zn Vacancies in Zn ₃ ln ₂ S ₆ Nanosheets on Boosting Photocatalytic N ₂ Fixation. ACS Applied Energy Materials, 2020, 3, 11275-11284.	5.1	49
52	Photocatalytic Performance of NiS/CdS Composite with Multistage Structure. ACS Applied Energy Materials, 2020, 3, 7736-7745.	5.1	48
53	Photocatalytic synthesis of Schiff base compounds in the coupled system of aromatic alcohols and nitrobenzene using CdXZn1â^'XS photocatalysts. Journal of Catalysis, 2018, 359, 151-160.	6.2	46
54	Crystal phase-controlled synthesis of BiPO4 and the effect of phase structure on the photocatalytic degradation of gaseous benzene. Chemical Engineering Journal, 2017, 330, 433-441.	12.7	46

#	Article	IF	CITATIONS
55	Photocatalytic reforming of C3-polyols for H2 production. Applied Catalysis B: Environmental, 2011, 106, 689-696.	20.2	45
56	Hydrothermal synthesis of MSn(OH)6 (M = Co, Cu, Fe, Mg, Mn, Zn) and their photocatalytic activity for the destruction of gaseous benzene. Chemical Engineering Journal, 2015, 269, 168-179.	12.7	45
57	Ultra-low content of Pt modified CdS nanorods: Preparation, characterization, and application for photocatalytic selective oxidation of aromatic alcohols and reduction of nitroarenes in one reaction system. Journal of Hazardous Materials, 2018, 360, 182-192.	12.4	45
58	Photocatalytic organic transformations: Simultaneous oxidation of aromatic alcohols and reduction of nitroarenes on CdLa2S4 in one reaction system. Applied Catalysis B: Environmental, 2018, 233, 1-10.	20.2	44
59	Coupled visible-light driven photocatalytic reactions over porphyrin-based MOF materials. Chemical Engineering Journal, 2022, 442, 136186.	12.7	44
60	Construction of two-dimensionally relative p-n heterojunction for efficient photocatalytic redox reactions under visible light. Applied Surface Science, 2020, 505, 144638.	6.1	37
61	The Holeâ€Tunneling Heterojunction of Hematiteâ€Based Photoanodes Accelerates Photosynthetic Reaction. Angewandte Chemie - International Edition, 2021, 60, 16009-16018.	13.8	37
62	Remarkable enhancement of photocatalytic performance via constructing a novel Z-scheme KNbO 3 /Bi 2 O 3 hybrid material. Materials Research Bulletin, 2017, 94, 352-360.	5.2	35
63	Compositional regulation and modification of the host CdS for efficient photocatalytic hydrogen production: Case study on MoS2 decorated Co0.2Cd0.8S nanorods. Chemical Engineering Journal, 2019, 378, 122139.	12.7	33
64	The preparation and characterization of composite bismuth tungsten oxide with enhanced visible light photocatalytic activity. CrystEngComm, 2013, 15, 7943.	2.6	31
65	Preparation, characterization, and photocatalytic performance of Ce2S3 for nitrobenzene reduction. Applied Surface Science, 2013, 275, 335-341.	6.1	31
66	Fabrication of hydrophilic S/In2O3 core–shell nanocomposite for enhancement of photocatalytic performance under visible light irradiation. Applied Surface Science, 2015, 324, 188-197.	6.1	31
67	Photocatalytic reforming of ethanol to H2 and CH4 over ZnSn(OH)6 nanocubes. International Journal of Hydrogen Energy, 2011, 36, 1524-1530.	7.1	30
68	Optimizing the precursor of sulfur source for hydrothermal synthesis of high performance CdS for photocatalytic hydrogen production. RSC Advances, 2018, 8, 11489-11497.	3.6	29
69	Low-crystalline PdCu alloy on large-area ultrathin 2D carbon nitride nanosheets for efficient photocatalytic Suzuki coupling. Applied Catalysis B: Environmental, 2022, 300, 120756.	20.2	29
70	Effect of oxygen mobility in the lattice of Au/TiO2 on formaldehyde oxidation. Kinetics and Catalysis, 2012, 53, 239-246.	1.0	26
71	Metastable scheelite CdWO4:Eu3+ nanophosphors: Solvothermal synthesis, phase transitions and their polymorph-dependent luminescence properties. Dyes and Pigments, 2017, 147, 283-290.	3.7	25
72	A Novel <scp>CdS</scp> /gâ€ <scp>C₃N₄</scp> Composite Photocatalyst: Preparation, Characterization and Photocatalytic Performance with Different Reaction Solvents under Visible Light Irradiation. Chinese Journal of Chemistry, 2017, 35, 217-225.	4.9	25

#	Article	IF	CITATIONS
73	Amino acid-assisted synthesis of In ₂ S ₃ hierarchical architectures for selective oxidation of aromatic alcohols to aromatic aldehydes. RSC Advances, 2017, 7, 6457-6466.	3.6	22
74	Efficient H ₂ evolution on Co ₃ S ₄ /Zn _{0.5} Cd _{0.5} S nanocomposites by photocatalytic synergistic reaction. Inorganic Chemistry Frontiers, 2022, 9, 1943-1955.	6.0	22
75	Preparation, characterization and photocatalytic activity evaluation ofÂNaBiO3·2H2O and NaBiO3·xH2O nanosheets. Materials Chemistry and Physics, 2013, 142, 748-755.	4.0	20
76	Coordinating ultra-low content Au modified CdS with coupling selective oxidation and reduction system for improved photoexcited charge utilization. Journal of Catalysis, 2021, 402, 72-82.	6.2	19
77	Efficient photocatalytic H2 production coupling with selective oxidation of aromatic alcohol under carbon neutrality. Applied Catalysis B: Environmental, 2021, 298, 120619.	20.2	18
78	Construction of NiP _x /MoS ₂ /NiS/CdS composite to promote photocatalytic H ₂ production from glucose solution. Journal of the American Ceramic Society, 2021, 104, 5307-5316.	3.8	17
79	Mo–W based copper oxides: Preparation, characterizations, and photocatalytic reduction of nitrobenzene. Materials Chemistry and Physics, 2013, 141, 719-726.	4.0	16
80	Theoretical Studies on DNA-Cleavage Mechanism of Copper(II) Complexes: Probing Generation of Reactive Oxygen Species. Journal of Chemical Information and Modeling, 2018, 58, 859-866.	5.4	14
81	A Comprehensive Understanding of the Melting Temperature of Nanocrystals: Implications for Catalysis. ACS Applied Nano Materials, 2020, 3, 1583-1591.	5.0	10
82	One-Pot Synthesis of ZnO ₂ /ZnO Composite with Enhanced Photocatalytic Performance for Organic Dye Removal. Journal of Nanoscience and Nanotechnology, 2013, 13, 657-665.	0.9	9
83	Ultrasonication-Assisted Synthesis of ZnxCd1â^'xS for Enhanced Visible-Light Photocatalytic Activity. Catalysts, 2020, 10, 276.	3.5	9
84	H2–O2 promoting effect on photocatalytic degradation of organic pollutants in an aqueous solution without an external H2 supply. Applied Catalysis A: General, 2010, 380, 178-184.	4.3	8
85	Sodium titanate nanowires as a stable and easily handled precursor for the shape controlled synthesis of TiO2and their photocatalytic performance. CrystEngComm, 2014, 16, 616-626.	2.6	8
86	Colored TiO2 hollow spheres for efficient water-splitting photocatalysts. RSC Advances, 2016, 6, 108969-108973.	3.6	8
87	Hydrogenation of Cinnamaldehyde to Hydrocinnamyl Alcohol on Pt/Graphite Catalyst. ChemistrySelect, 2019, 4, 2018-2023.	1.5	8
88	Visible-Light-Driven H2 Evolution with Cobalt Complexes in Aqueous Solution: Theoretical and Experimental Study. Journal of Physical Chemistry C, 2019, 123, 30351-30359.	3.1	8
89	One-Pot Solid-State Reaction Approach to Synthesize Ag-Cu ₂ O/GO Ternary Nanocomposites with Enhanced Visible-Light-Responsive Photocatalytic Activity. International Journal of Photoenergy, 2017, 2017, 1-8.	2.5	7
90	The morphology and photocatalytic performance of Zn(OH)F under different synthetic conditions. Journal of Fluorine Chemistry, 2020, 237, 109600.	1.7	5

#	Article	IF	CITATIONS
91	Theoretical study on the DNA interaction properties of copper(II) complexes. Computational Biology and Chemistry, 2019, 80, 244-248.	2.3	4
92	Progress in Photocatalytic Synthesis of Benzimidazoles. ChemistrySelect, 2021, 6, 12628-12643.	1.5	4
93	Unraveling Electron Structure and Reaction Mechanisms of Functionalized Nickel-Based Complexes for Efficient Hydrogen Evolution. Journal of Physical Chemistry C, 2022, 126, 1857-1871.	3.1	4
94	Accelerating Nickel-Based Molecular Construction via DFT Guidance for Advanced Photocatalytic Hydrogen Production. ACS Applied Materials & Samp; Interfaces, 2022, 14, 17486-17499.	8.0	4
95	Recent advances in special morphologic photocatalysts for NOx removal. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	6.0	4
96	Synthesis of novel morphology-controlled Bi(OH)CrO4 with high visible light photocatalytic activity. Materials Research Bulletin, 2013, 48, 3292-3297.	5.2	3
97	The Holeâ€Tunneling Heterojunction of Hematiteâ€Based Photoanodes Accelerates Photosynthetic Reaction. Angewandte Chemie, 2021, 133, 16145-16154.	2.0	2
98	Pt/ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>TiO- mathvariant="bold">2</mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:math> Coupled with Water-Splitting Catalyst for Organic Pollutant Photodegradation: Insight into the Primary Reaction	00.3	ext>1
99	Mechanism. Research Letters in Physical Chemistry, 2008, 2008, 1-5. Laser bonding of glass and glass with constant temperature output., 2018,,.		1