
Steven Whitebread

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2057457/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The activities of drug inactive ingredients on biological targets. Science, 2020, 369, 403-413.	6.0	61
2	Optimization of novel monobactams with activity against carbapenem-resistant Enterobacteriaceae – Identification of LYS228. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 748-755.	1.0	48
3	Reverse translation of adverse event reports paves the way for de-risking preclinical off-targets. ELife, 2017, 6, .	2.8	44
4	Secondary pharmacology: screening and interpretation of off-target activities – focus on translation. Drug Discovery Today, 2016, 21, 1232-1242.	3.2	52
5	Implications of Dynamic Occupancy, Binding Kinetics, and Channel Gating Kinetics for hERG Blocker Safety Assessment and Mitigation. Current Topics in Medicinal Chemistry, 2016, 16, 1792-1818.	1.0	22
6	Matched Molecular Pair Analysis: Significance and the Impact of Experimental Uncertainty. Journal of Medicinal Chemistry, 2014, 57, 3786-3802.	2.9	62
7	Translation of off-target effects: prediction of ADRs by integrated experimental and computational approach. Toxicology Research, 2014, 3, 433-444.	0.9	11
8	A Screening Pattern Recognition Method Finds New and Divergent Targets for Drugs and Natural Products. ACS Chemical Biology, 2014, 9, 1622-1631.	1.6	34
9	Reducing safety-related drug attrition: the use of in vitro pharmacological profiling. Nature Reviews Drug Discovery, 2012, 11, 909-922.	21.5	578
10	Large-scale prediction and testing of drug activity on side-effect targets. Nature, 2012, 486, 361-367.	13.7	782
11	Optimization of the in Vitro Cardiac Safety of Hydroxamate-Based Histone Deacetylase Inhibitors. Journal of Medicinal Chemistry, 2011, 54, 4752-4772.	2.9	54
12	<i>In vitro</i> safety pharmacology profiling: what else beyond hERG?. Future Medicinal Chemistry, 2009, 1, 645-665.	1.1	46
13	Mapping Adverse Drug Reactions in Chemical Space. Journal of Medicinal Chemistry, 2009, 52, 3103-3107.	2.9	156
14	Gaining Insight into Off-Target Mediated Effects of Drug Candidates with a Comprehensive Systems Chemical Biology Analysis. Journal of Chemical Information and Modeling, 2009, 49, 308-317.	2.5	161
15	ABP688, a novel selective and high affinity ligand for the labeling of mGlu5 receptors: Identification, in vitro pharmacology, pharmacokinetic and biodistribution studies. Bioorganic and Medicinal Chemistry, 2007, 15, 903-914.	1.4	66
16	2-Cycloalkyl phenoxyacetic acid CRTh2 receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 4347-4350.	1.0	19
17	High-throughputinvitroprofiling assays: lessons learnt from experiences at Novartis. Expert Opinion on Drug Metabolism and Toxicology, 2006, 2, 823-833.	1.5	30
18	Keynote review: In vitro safety pharmacology profiling: an essential tool for successful drug development. Drug Discovery Today, 2005, 10, 1421-1433.	3.2	357

#	Article	IF	CITATIONS
19	Discovery and SAR of potent, orally available and brain-penetrable 5,6-dihydro-4H-3-thia-1-aza-benzo[e]azulen- and 4,5-dihydro-6-oxa-3-thia-1-aza-benzo[e]azulen derivatives as neuropeptide Y Y5 receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 2451-2457.	1.0	19
20	Design, synthesis and SAR of a series of 2-substituted 4-amino-quinazoline neuropeptide Y Y 5 receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 1175-1179.	1.0	45
21	A receptor subtype involved in neuropeptide-Y-induced food intake. Nature, 1996, 382, 168-171.	13.7	889
22	Binding of valsartan to mammalian angiotensin AT1 receptors. Regulatory Peptides, 1995, 59, 303-311.	1.9	104
23	Valsartan, a potent, orally active angiotensin II antagonist developed from the structurally new amino acid series. Bioorganic and Medicinal Chemistry Letters, 1994, 4, 29-34.	1.0	107
24	Pharmacological profile of valsartan: a potent, orally active, nonpeptide antagonist of the angiotensin II AT ₁ â€receptor subtype. British Journal of Pharmacology, 1993, 110, 761-771.	2.7	231
25	Angiotensin II binding sites on micro-organisms contaminating cell cultures. Regulatory Peptides, 1993, 44, 233-238.	1.9	15
26	Nonpeptidic angiotensin II antagonists: synthesis and in vitro activity of a series of novel naphthalene and tetrahydronaphthalene derivatives. Journal of Medicinal Chemistry, 1991, 34, 3105-3114.	2.9	40
27	Angiotensin II AT2 receptors do not interact with guanine nucleotide binding proteins. European Journal of Pharmacology, 1991, 207, 157-163.	2.7	128
28	Potentiation of angiotensin II-stimulated phosphoinositide hydrolysis, calcium mobilization and contraction of renal mesangial cells upon down-regulation of protein kinase C. FEBS Letters, 1990, 261, 307-311.	1.3	34
29	Sarmesin is a partial agonst of angiotensin-Il receptors in rabbit, but not in rat, aortic rings. Biochemical and Biophysical Research Communications, 1990, 169, 636-642.	1.0	3
30	Preliminary biochemical characterization of two angiotensin II receptor subtypes. Biochemical and Biophysical Research Communications, 1989, 163, 284-291.	1.0	758