Nirmal Prashanth Maria Joseph Raj

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/2057411/publications.pdf
Version: 2024-02-01

1 Method for fabricating highly crystalline polyvinylidene fluoride for piezoelectric energy-harvesting 4.9 and vibration sensor applications. Sustainable Energy and Fuels, 2022, 6, 674-681.Crystallinity modulation originates ferroelectricity like nature in piezoelectric selenium. Nano
7 O.8BNTấ"O.2BKT ferroelectric-based multimode energy harvester for self-powered body motion

sensors. Nano Energy, 2021, 83, 105848. \begin{tabular}{l}
Enhancing Hydrophobicity of Starch for Biodegradable Material-Based Triboelectric Nanogenerators

$8 \quad$| ACS Sustainable Chemistry and Engineering, 2021, 9, 9011-9017. |
| :--- |

\end{tabular}

11	Remotely controlled self-powering electrical stimulators for osteogenic differentiation using bone inspired bioactive piezoelectric whitlockite nanoparticles. Nano Energy, 2021, 85, 105901.	16.0	43
12	Materials Beyond Conventional Triboelectric Series for Fabrication and Applications of Triboelectric Nanogenerators. Advanced Energy Materials, 2021, 11, 2101170.	19.5	122
13	Triboelectric nanogenerator using multiferroic materials: An approach for energy harvesting and self-powered magnetic field detection. Nano Energy, 2021, 85, 105964.	16.0	53

The morphotropic phase boundary based BCST ferroelectric system for water remediation through

19 Triboelectric nanogenerator for healthcare and biomedical applications. Nano Today, 2020, 33, 1008 . | All in one transitional flow-based integrated self-powered catechol sensor using BiFeO3 |
| :--- |
| nanoparticles. Sensors and Actuators B: Chemical, 2020, 320, 128417. |

22 Aloe vera: A tropical desert plant to harness the mechanical energy by triboelectric and piezoelectric

$23 \quad$| Zeolitic Imidazole Framework: Metalâ€"Organic Framework Subfamily Members for Triboelectric |
| :--- |
| Nanogenerators. Advanced Functional Materials, 2020, 30, 1910162. |

$24 \quad$| All edible materials derived biocompatible and biodegradable triboelectric nanogenerator. Nano |
| :--- |
| Energy, 2019, 65, 104016. |

25
Self-powered ferroelectric NTC thermistor based on bismuth titanate. Nano Energy, 2019, 62, 329-337.

ZIFâ€8 Energy Harvester: Metalâ€"Organic Framework: A Novel Material for Triboelectric
26 Nanogeneratorâ $€$ "Based Selfâ€ Powered Sensors and Systems (Adv. Energy Mater. 14/2019). Advanced EnergyMaterials, 2019, 9, 1970043.

Metalâ€"Organic Framework: A Novel Material for Triboelectric Nanogeneratorâ€"Based Selfâ€Powered
Sensors and Systems. Advanced Energy Materials, 2019, 9, 1803581.

Lead-free piezoelectric nanogenerator using lightweight composite films for harnessing
biomechanical energy. Composites Part B: Engineering, 2019, 161, 608-616.

Phase inversion enabled energy scavenger: A multifunctional triboelectric nanogenerator as benzene monitoring system. Sensors and Actuators B: Chemical, 2019, 282, 590-598.

Novel Interfacial Bulk Heterojunction Technique for Enhanced Response in ZnO Nanogenerator. ACS
30 Applied Materials \& Interfaces, 2019, 11, 6078-6088.
8.0

29

Trash to energy: A facile, robust and cheap approach for mitigating environment pollutant using
10.1

79
household triboelectric nanogenerator. Applied Energy, 2018, 219, 338-349.

Role of Cationic Oxidation States to Enhance the Electroactive $\hat{2} 2 \hat{a} €$ Phase of Poly(vinylidene Fluoride) and its Energy Harvesting Performance. ChemElectroChem, 2018, 5, 3533-3539.

3

Sustainable yarn type-piezoelectric energy harvester as an eco-friendly, cost-effective battery-free

