
Nirmal Prashanth Maria Joseph Raj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2057411/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metal–Organic Framework: A Novel Material for Triboelectric Nanogenerator–Based Selfâ€Powered Sensors and Systems. Advanced Energy Materials, 2019, 9, 1803581.	19.5	138
2	Materials Beyond Conventional Triboelectric Series for Fabrication and Applications of Triboelectric Nanogenerators. Advanced Energy Materials, 2021, 11, 2101170.	19.5	122
3	Triboelectric nanogenerator for healthcare and biomedical applications. Nano Today, 2020, 33, 100882.	11.9	110
4	All edible materials derived biocompatible and biodegradable triboelectric nanogenerator. Nano Energy, 2019, 65, 104016.	16.0	103
5	Zeolitic Imidazole Framework: Metal–Organic Framework Subfamily Members for Triboelectric Nanogenerators. Advanced Functional Materials, 2020, 30, 1910162.	14.9	94
6	Trash to energy: A facile, robust and cheap approach for mitigating environment pollutant using household triboelectric nanogenerator. Applied Energy, 2018, 219, 338-349.	10.1	79
7	ZIF-62: a mixed linker metal–organic framework for triboelectric nanogenerators. Journal of Materials Chemistry A, 2020, 8, 17817-17825.	10.3	66
8	Triboelectric nanogenerator using multiferroic materials: An approach for energy harvesting and self-powered magnetic field detection. Nano Energy, 2021, 85, 105964.	16.0	53
9	Biodegradable metal-organic framework MIL-88A for triboelectric nanogenerator. IScience, 2021, 24, 102064.	4.1	52
10	Synergetic enhancement of energy harvesting performance in triboelectric nanogenerator using ferroelectric polarization for self-powered IR signaling and body activity monitoring. Journal of Materials Chemistry A, 2020, 8, 22257-22268.	10.3	44
11	Sustainable yarn type-piezoelectric energy harvester as an eco-friendly, cost-effective battery-free breath sensor. Applied Energy, 2018, 228, 1767-1776.	10.1	43
12	Remotely controlled self-powering electrical stimulators for osteogenic differentiation using bone inspired bioactive piezoelectric whitlockite nanoparticles. Nano Energy, 2021, 85, 105901.	16.0	43
13	Lead-free piezoelectric nanogenerator using lightweight composite films for harnessing biomechanical energy. Composites Part B: Engineering, 2019, 161, 608-616.	12.0	39
14	Enhancing Hydrophobicity of Starch for Biodegradable Material-Based Triboelectric Nanogenerators. ACS Sustainable Chemistry and Engineering, 2021, 9, 9011-9017.	6.7	39
15	Aloe vera: A tropical desert plant to harness the mechanical energy by triboelectric and piezoelectric approaches. Nano Energy, 2020, 73, 104767.	16.0	38
16	Self-powered ferroelectric NTC thermistor based on bismuth titanate. Nano Energy, 2019, 62, 329-337.	16.0	36
17	Phase inversion enabled energy scavenger: A multifunctional triboelectric nanogenerator as benzene monitoring system. Sensors and Actuators B: Chemical, 2019, 282, 590-598.	7.8	36
18	Novel Interfacial Bulk Heterojunction Technique for Enhanced Response in ZnO Nanogenerator. ACS Applied Materials & Interfaces, 2019, 11, 6078-6088.	8.0	29

#	Article	IF	CITATIONS
19	Substantial improvement on electrical energy harvesting by chemically modified/sandpaper-based surface modification in micro-scale for hybrid nanogenerators. Applied Surface Science, 2020, 514, 145904.	6.1	27
20	Green Energy from Edible Materials: Triboelectrification-Enabled Sustainable Self-Powered Human Joint Movement Monitoring. ACS Sustainable Chemistry and Engineering, 2022, 10, 6549-6558.	6.7	21
21	All in one transitional flow-based integrated self-powered catechol sensor using BiFeO3 nanoparticles. Sensors and Actuators B: Chemical, 2020, 320, 128417.	7.8	19
22	A lead-free ferroelectric Bi0.5Na0.5TiO3 based flexible, lightweight nanogenerator for motion monitoring applications. Sustainable Energy and Fuels, 2020, 4, 5636-5644.	4.9	13
23	Metal-Amino Acid Nanofibers based Triboelectric Nanogenerator for Self-Powered Thioacetamide Sensor. ACS Applied Materials & Interfaces, 2021, 13, 18887-18896.	8.0	13
24	The morphotropic phase boundary based BCST ferroelectric system for water remediation through Bi-catalytic activity. Journal of Alloys and Compounds, 2021, 871, 159503.	5.5	11
25	One step synthesis of tin oxide nanomaterials and their sintering effect in dye degrdation. Optik, 2017, 135, 434-445.	2.9	10
26	Shape-dependent in-plane piezoelectric response of SnSe nanowall/microspheres. Nano Energy, 2021, 88, 106231.	16.0	10
27	Method for fabricating highly crystalline polyvinylidene fluoride for piezoelectric energy-harvesting and vibration sensor applications. Sustainable Energy and Fuels, 2022, 6, 674-681.	4.9	10
28	Ferroelectric flexible composite films based on morphotropic phase boundary for self-powered multisensors. Chemical Engineering Journal, 2021, 414, 128840.	12.7	9
29	Tailoring mechanical energy harvesting performance of piezoelectric nanogenerator via intrinsic electrical conductivity of ferroelectrics. Materials Today Energy, 2021, 20, 100679.	4.7	9
30	0.8BNT–0.2BKT ferroelectric-based multimode energy harvester for self-powered body motion sensors. Nano Energy, 2021, 83, 105848.	16.0	7
31	Crystallinity modulation originates ferroelectricity like nature in piezoelectric selenium. Nano Energy, 2022, 95, 107008.	16.0	4
32	Role of Cationic Oxidation States to Enhance the Electroactive βâ€Phase of Poly(vinylidene Fluoride) and its Energy Harvesting Performance. ChemElectroChem, 2018, 5, 3533-3539.	3.4	3
33	ZIFâ€8 Energy Harvester: Metal–Organic Framework: A Novel Material for Triboelectric Nanogenerator–Based Selfâ€Powered Sensors and Systems (Adv. Energy Mater. 14/2019). Advanced Energy Materials, 2019, 9, 1970043.	19.5	3
34	High-Performance Multifaceted Piezoelectric Composite Nanogenerators for Weight-Monitoring Sensors. ACS Applied Electronic Materials, 2021, 3, 2024-2034.	4.3	3