Partha Pratim Adhikary

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2056404/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of COVID-19 lockdown and unlock on the health of tropical large river with associated human health risk. Environmental Science and Pollution Research, 2022, 29, 37041-37056.	5.3	4
2	EvaluationÂofÂgroundwaterÂqualityÂandÂitsÂimpactÂonÂhumanÂhealth: a caseÂstudyÂfromÂChotanagpurÂplateauÂfringeÂregionÂinÂIndia. Applied Water Science, 2022, 12, 1.	5.6	15
3	Assessment of groundwater potential zone using MCDA and AHP techniques: case study from a tropical river basin of India. Applied Water Science, 2022, 12, 1.	5.6	18
4	Effect of urbanization on the dynamics of ecosystem services: An analysis for decision making in Kolkata urban agglomeration. Urban Ecosystems, 2022, 25, 1541-1559.	2.4	10
5	Groundwater and Space Technology: Issues and Challenges. , 2021, , 83-102.		0
6	Quantifying forest cover changes in Koraput district, India using remote sensing and GIS. , 2021, , 185-191.		0
7	Introduction to Groundwater and Society: Applications of Geospatial Technology. , 2021, , 3-9.		0
8	Watershed Development Impact on Natural Resources: Groundwater and Surface Water Utilization. , 2021, , 365-380.		0
9	Introduction to Part I: Soil and Sediment Contaminants, Risk Assessment, and Remediation. Environmental Challenges and Solutions, 2021, , 3-6.	0.9	0
10	Eco-restoration of river water quality during COVID-19 lockdown in the industrial belt of eastern India. Environmental Science and Pollution Research, 2021, 28, 25514-25528.	5.3	46
11	Assessment of non-carcinogenic health risk of heavy metal pollution: evidences from coal mining region of eastern India. Environmental Science and Pollution Research, 2021, 28, 47275-47293.	5.3	25
12	Geospatial and Geophysical Approaches for Assessment of Groundwater Resources in an Alluvial Aquifer of India. , 2021, , 53-82.		0
13	Cleaning the river Damodar (India): impact of COVID-19 lockdown on water quality and future rejuvenation strategies. Environment, Development and Sustainability, 2021, 23, 11975-11989.	5.0	70
14	Positive effects of COVID-19 lockdown on river water quality: evidence from River Damodar, India. Scientific Reports, 2021, 11, 20140.	3.3	36
15	Hedge row intercropping impact on run-off, soil erosion, carbon sequestration and millet yield. Nutrient Cycling in Agroecosystems, 2020, 116, 103-116.	2.2	18
16	Spatial Extent, Formation Process, Reclaimability Classification System and Restoration Strategies of Gully and Ravine Lands in India. Advances in Science, Technology and Innovation, 2020, , 1-20.	0.4	6
17	Soil Disintegration Characteristics on Ephemeral Gully Collapsing in Lateritic Belt of West Bengal, India. Advances in Science, Technology and Innovation, 2020, , 21-33.	0.4	4
18	Rainfall erosivity and erosivity density in Eastern Ghats Highland of east India. Natural Hazards, 2019, 97, 727-746.	3.4	20

Partha Pratim Adhikary

#	Article	IF	CITATIONS
19	Numerical simulation to assess potential groundwater recharge and net groundwater use in a semi-arid region. Environmental Monitoring and Assessment, 2019, 191, 371.	2.7	15
20	Effect of Calibration and Validation Decisions on Streamflow Modeling for a Heterogeneous and Low Runoff–Producing River Basin in India. Journal of Hydrologic Engineering - ASCE, 2019, 24, .	1.9	20
21	Land use and land cover dynamics with special emphasis on shifting cultivation in Eastern Ghats Highlands of India using remote sensing data and GIS. Environmental Monitoring and Assessment, 2019, 191, 315.	2.7	28
22	Comparison of rainfall kinetic energy–intensity relationships for Eastern Ghats Highland region of India. Natural Hazards, 2018, 93, 547-558.	3.4	5
23	Soil and onsite nutrient conservation potential of aromatic grasses at field scale under a shifting cultivated, degraded catchment in Eastern Ghats, India. International Journal of Sediment Research, 2018, 33, 340-350.	3.5	12
24	Energy Consumption and Sensitivity Analysis of Rainfed Chickpea Production in Vertisols of Semi-arid Karnataka. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2018, 88, 685-694.	1.0	0
25	Comparison of deterministic and stochastic methods to predict spatial variation of groundwater depth. Applied Water Science, 2017, 7, 339-348.	5.6	67
26	Multitier agroforestry system for integrated resource conservation on uplands of Eastern Ghats region in India. Agroforestry Systems, 2017, 91, 697-712.	2.0	13
27	Soil erosion control and carbon sequestration in shifting cultivated degraded highlands of eastern India: performance of two contour hedgerow systems. Agroforestry Systems, 2017, 91, 757-771.	2.0	38
28	Soil water budgeting approach to quantify potential groundwater recharge from croplands and groundwater use in a semi-arid region. Environmental Earth Sciences, 2016, 75, 1.	2.7	4
29	Simulation of Nitrate Leaching under Maize–Wheat Cropping System in a Semiarid Irrigated Area of the Indo-Gangetic Plain, India. Journal of Irrigation and Drainage Engineering - ASCE, 2016, 142, 04015053.	1.0	9
30	Prediction of root zone water and nitrogen balance in an irrigated rice field using a simulation model. Paddy and Water Environment, 2015, 13, 281-290.	1.8	46
31	GIS applicability to assess spatio-temporal variation of groundwater quality and sustainable use for irrigation. Arabian Journal of Geosciences, 2015, 8, 2699-2711.	1.3	14
32	Electrical resistivity tomography for assessment of groundwater salinity in west Delhi, India. Arabian Journal of Geosciences, 2015, 8, 2687-2698.	1.3	15
33	Geospatial comparison of four models to predict soil erodibility in a semi-arid region of Central India. Environmental Earth Sciences, 2014, 72, 5049-5062.	2.7	19
34	Evaluation of groundwater quality for irrigation and drinking using GIS and geostatistics in a peri-urban area of Delhi, India. Arabian Journal of Geosciences, 2012, 5, 1423-1434.	1.3	59
35	Indicator and probability kriging methods for delineating Cu, Fe, and Mn contamination in groundwater of Najafgarh Block, Delhi, India. Environmental Monitoring and Assessment, 2011, 176, 663-676.	2.7	50
36	Assessment of groundwater pollution in West Delhi, India using geostatistical approach. Environmental Monitoring and Assessment, 2010, 167, 599-615.	2.7	84

#	Article	IF	CITATIONS
37	Statistical approaches for hydrogeochemical characterization of groundwater in West Delhi, India. Environmental Monitoring and Assessment, 2009, 154, 41-52.	2.7	27
38	Pedotransfer functions for predicting the hydraulic properties of Indian soils. Soil Research, 2008, 46, 476.	1.1	44