
## Andrea Barbetta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2056213/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Transient Anomalous Diffusion MRI Measurement Discriminates Porous Polymeric Matrices<br>Characterized by Different Sub-Microstructures and Fractal Dimension. Gels, 2022, 8, 95.                                                             | 2.1 | 2         |
| 2  | 3D printing of biphasic inks: beyond single-scale architectural control. Journal of Materials<br>Chemistry C, 2021, 9, 12489-12508.                                                                                                           | 2.7 | 14        |
| 3  | 4D printing in biomedical applications: emerging trends and technologies. Journal of Materials<br>Chemistry B, 2021, 9, 7608-7632.                                                                                                            | 2.9 | 65        |
| 4  | Tackling Current Biomedical Challenges With Frontier Biofabrication and Organ-On-A-Chip<br>Technologies. Frontiers in Bioengineering and Biotechnology, 2021, 9, 732130.                                                                      | 2.0 | 11        |
| 5  | Photocurable Biopolymers for Coaxial Bioprinting. Methods in Molecular Biology, 2021, 2147, 45-54.                                                                                                                                            | 0.4 | 3         |
| 6  | The Role of Biofilm in Central Venous Catheter Related Bloodstream Infections: Evidence-based Nursing and Review of the Literature. Reviews on Recent Clinical Trials, 2020, 15, 22-27.                                                       | 0.4 | 14        |
| 7  | Engineering Human-Scale Artificial Bone Grafts for Treating Critical-Size Bone Defects. ACS Applied<br>Bio Materials, 2019, 2, 5077-5092.                                                                                                     | 2.3 | 12        |
| 8  | 3D bioprinting of hydrogel constructs with cell and material gradients for the regeneration of full-thickness chondral defect using a microfluidic printing head. Biofabrication, 2019, 11, 044101.                                           | 3.7 | 120       |
| 9  | 3Dâ€Printing of Functionally Graded Porous Materials Using Onâ€Demand Reconfigurable Microfluidics.<br>Angewandte Chemie - International Edition, 2019, 58, 7620-7625.                                                                        | 7.2 | 73        |
| 10 | 3Dâ€Printing of Functionally Graded Porous Materials Using Onâ€Đemand Reconfigurable Microfluidics.<br>Angewandte Chemie, 2019, 131, 7702-7707.                                                                                               | 1.6 | 6         |
| 11 | 3D bioprinted hydrogel model incorporating <i>î²</i> -tricalcium phosphate for calcified cartilage tissue engineering. Biofabrication, 2019, 11, 035016.                                                                                      | 3.7 | 82        |
| 12 | Co-axial wet-spinning in 3D bioprinting: state of the art and future perspective of microfluidic integration. Biofabrication, 2019, 11, 012001.                                                                                               | 3.7 | 75        |
| 13 | Electric Field Assisted Microfluidic Platform for Generation of Tailorable Porous Microbeads as Cell<br>Carriers for Tissue Engineering. Advanced Functional Materials, 2018, 28, 1800874.                                                    | 7.8 | 32        |
| 14 | Skin tears and risk factors assessment: a systematic review on evidenceâ€based medicine. International<br>Wound Journal, 2018, 15, 38-42.                                                                                                     | 1.3 | 55        |
| 15 | Energy Harvesting: Electric Field Assisted Microfluidic Platform for Generation of Tailorable Porous<br>Microbeads as Cell Carriers for Tissue Engineering (Adv. Funct. Mater. 20/2018). Advanced Functional<br>Materials, 2018, 28, 1870133. | 7.8 | 4         |
| 16 | Gas foaming technologies for 3D scaffold engineering. , 2018, , 127-149.                                                                                                                                                                      |     | 23        |
| 17 | Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs. Methods in Molecular Biology, 2017,<br>1612, 369-380.                                                                                                                         | 0.4 | 28        |
| 18 | Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally                                                                                                                                                | 5.7 | 252       |

organized myofibers inÂvitro and inÂvivo. Biomaterials, 2017, 131, 98-110.

Andrea Barbetta

| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Engineering Muscle Networks in 3D Gelatin Methacryloyl Hydrogels: Influence of Mechanical<br>Stiffness and Geometrical Confinement. Frontiers in Bioengineering and Biotechnology, 2017, 5, 22.                   | 2.0  | 60        |
| 20 | Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Lowâ€Viscosity Bioink. Advanced<br>Materials, 2016, 28, 677-684.                                                                             | 11.1 | 677       |
| 21 | The role of adult tissueâ€derived stem cells in chronic leg ulcers: a systematic review focused on tissue regeneration medicine. International Wound Journal, 2016, 13, 1289-1298.                                | 1.3  | 16        |
| 22 | 3D bioprinting of BM-MSCs-loaded ECM biomimetic hydrogels for <i>in vitro</i> neocartilage formation. Biofabrication, 2016, 8, 035002.                                                                            | 3.7  | 211       |
| 23 | Correlation between porous texture and cell seeding efficiency of gas foaming and microfluidic foaming scaffolds. Materials Science and Engineering C, 2016, 62, 668-677.                                         | 3.8  | 70        |
| 24 | Microfluidic Foaming: A Powerful Tool for Tailoring the Morphological and Permeability Properties<br>of Sponge-like Biopolymeric Scaffolds. ACS Applied Materials & Interfaces, 2015, 7, 23660-23671.             | 4.0  | 55        |
| 25 | Designing unconventional Fmoc-peptide-based biomaterials: structure and related properties. Soft<br>Matter, 2014, 10, 1944.                                                                                       | 1.2  | 37        |
| 26 | Polyhydroxyalkanoates production with mixed microbial cultures: from culture selection to polymer recovery in a high-rate continuous process. New Biotechnology, 2014, 31, 289-296.                               | 2.4  | 74        |
| 27 | Highly ordered and tunable polyHIPEs by using microfluidics. Journal of Materials Chemistry B, 2014, 2, 2290.                                                                                                     | 2.9  | 80        |
| 28 | Rapid prototyping of chitosan-coated alginate scaffolds through the use of a 3D fiber deposition technique. Journal of Materials Chemistry B, 2014, 2, 6779-6791.                                                 | 2.9  | 69        |
| 29 | Synthesis and characterization of a novel poly(vinyl alcohol) 3D platform for the evaluation of hepatocytes' response to drug administration. Journal of Materials Chemistry B, 2013, 1, 3083.                    | 2.9  | 31        |
| 30 | Morphological Comparison of PVA Scaffolds Obtained by Gas Foaming and Microfluidic Foaming Techniques. Langmuir, 2013, 29, 82-91.                                                                                 | 1.6  | 92        |
| 31 | In Situ Precipitation of Amorphous Calcium Phosphate and Ciprofloxacin Crystals during the<br>Formation of Chitosan Hydrogels and Its Application for Drug Delivery Purposes. Langmuir, 2012, 28,<br>15937-15946. | 1.6  | 37        |
| 32 | Role of X-ray microtomography in tissue engineering. Annali Dell'Istituto Superiore Di Sanita, 2012, 48,<br>10-8.                                                                                                 | 0.2  | 28        |
| 33 | Human cardiosphere-seeded gelatin and collagen scaffolds as cardiogenic engineered bioconstructs.<br>Biomaterials, 2011, 32, 9271-9281.                                                                           | 5.7  | 59        |
| 34 | Cardiospheres and tissue engineering for myocardial regeneration: potential for clinical application.<br>Journal of Cellular and Molecular Medicine, 2010, 14, no-no.                                             | 1.6  | 30        |
| 35 | Rheological properties of guar and its methyl, hydroxypropyl and hydroxypropyl-methyl derivatives in semidilute and concentrated aqueous solutions. Polymer, 2010, 51, 1972-1982.                                 | 1.8  | 75        |
| 36 | Porous gelatin hydrogels by gas-in-liquid foam templating. Soft Matter, 2010, 6, 1785.                                                                                                                            | 1.2  | 99        |

Andrea Barbetta

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Polysaccharide based scaffolds obtained by freezing the external phase of gas-in-liquid foams. Soft<br>Matter, 2010, 6, 5213.                                                                                          | 1.2 | 60        |
| 38 | Influence of dialkyne structure on the properties of new click-gels based on hyaluronic acid.<br>International Journal of Pharmaceutics, 2009, 378, 86-92.                                                             | 2.6 | 34        |
| 39 | Synthesis and characterization of porous glycidylmethacrylate–divinylbenzene monoliths using the high internal phase emulsion approach. Reactive and Functional Polymers, 2009, 69, 724-736.                           | 2.0 | 62        |
| 40 | Gas-in-Liquid Foam Templating as a Method for the Production of Highly Porous Scaffolds.<br>Biomacromolecules, 2009, 10, 3188-3192.                                                                                    | 2.6 | 63        |
| 41 | Porous Alginate Hydrogels: Synthetic Methods for Tailoring the Porous Texture. Biomacromolecules, 2009, 10, 2328-2337.                                                                                                 | 2.6 | 94        |
| 42 | Emulsion Templated Scaffolds that Include Gelatin and Glycosaminoglycans. Biomacromolecules, 2008, 9, 2844-2856.                                                                                                       | 2.6 | 61        |
| 43 | Porous Biomaterials Obtained Using Supercritical CO2â <sup>3</sup> Water Emulsions. Langmuir, 2007, 23, 8243-8251.                                                                                                     | 1.6 | 60        |
| 44 | lonic gel formation of a (pseudo)alginate characterised by an alternating MG sequence produced by epimerising mannuronan with AlgE4. Carbohydrate Polymers, 2007, 67, 465-473.                                         | 5.1 | 24        |
| 45 | Enzymatic Cross-Linking versus Radical Polymerization in the Preparation of Gelatin PolyHIPEs and<br>Their Performance as Scaffolds in the Culture of Hepatocytes. Biomacromolecules, 2006, 7, 3059-3068.              | 2.6 | 102       |
| 46 | C(6)-Oxidation and C(5)-Epimerization of Locust Bean Galactomannan Studied by High Field NMR and<br>Circular Dichroism. Biomacromolecules, 2006, 7, 54-63.                                                             | 2.6 | 5         |
| 47 | Porous Polymers by Emulsion Templating. Macromolecular Symposia, 2005, 226, 203-212.                                                                                                                                   | 0.4 | 28        |
| 48 | Scaffolds Based on Biopolymeric Foams. Advanced Functional Materials, 2005, 15, 118-124.                                                                                                                               | 7.8 | 122       |
| 49 | Tailoring the Porosity and Morphology of Gelatin-Methacrylate PolyHIPE Scaffolds for Tissue<br>Engineering Applications. Langmuir, 2005, 21, 12333-12341.                                                              | 1.6 | 143       |
| 50 | Morphology and Surface Area of Emulsion-Derived (PolyHIPE) Solid Foams Prepared with Oil-Phase<br>Soluble Porogenic Solvents:Â Span 80 as Surfactant. Macromolecules, 2004, 37, 3188-3201.                             | 2.2 | 299       |
| 51 | Morphology and Surface Area of Emulsion-Derived (PolyHIPE) Solid Foams Prepared with Oil-Phase<br>Soluble Porogenic Solvents:Â Three-Component Surfactant System. Macromolecules, 2004, 37, 3202-3213.                 | 2.2 | 158       |
| 52 | High internal phase emulsions (HIPEs) containing divinylbenzene and 4-vinylbenzyl chloride and the morphology of the resulting PolyHIPE materials. Chemical Communications, 2000, , 221-222.                           | 2.2 | 133       |
| 53 | The influence of porogen type on the porosity, surface area and morphology of poly(divinylbenzene)<br>PolyHIPE foams. Journal of Materials Chemistry, 2000, 10, 2466-2471.                                             | 6.7 | 121       |
| 54 | Spectroscopic investigation on poly[bis(carboxylatophenoxy)]-phosphazene polyelectrolyte<br>interactions with cationic dyes in dilute aqueous solution. Macromolecular Chemistry and Physics,<br>1999, 200, 1157-1162. | 1.1 | 6         |