
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2055999/publications.pdf Version: 2024-02-01

LEIE NYHOLM

4

#	Article	IF	CITATIONS
1	Corrosion studies on multicomponent CoCrFeMnNi(C) thin films in acidic environments. Electrochimica Acta, 2022, 404, 139756.	2.6	4
2	Lithiumâ€Diffusion Induced Capacity Losses in Lithiumâ€Based Batteries. Advanced Materials, 2022, 34, e2108827.	11.1	44
3	Lithium electrodeposition for energy storage: filling the gap between theory and experiment. Materials Today Energy, 2022, 28, 101060.	2.5	3
4	Diffusion ontrolled Lithium Trapping in Graphite Composite Electrodes for Lithiumâ€lon Batteries. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	1
5	Why Celluloseâ€Based Electrochemical Energy Storage Devices?. Advanced Materials, 2021, 33, e2000892.	11.1	125
6	Strategies for Mitigating Dissolution of Solid Electrolyte Interphases in Sodiumâ€lon Batteries. Angewandte Chemie, 2021, 133, 4905-4913.	1.6	20
7	Strategies for Mitigating Dissolution of Solid Electrolyte Interphases in Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2021, 60, 4855-4863.	7.2	78
8	Process Window for Seeded Growth of Arrays of Quasi-Spherical Substrate-Supported Au Nanoparticles. Langmuir, 2021, 37, 6032-6041.	1.6	2
9	Redox Buffering Effects in Potentiometric Detection of DNA Using Thiol-Modified Gold Electrodes. ACS Sensors, 2021, 6, 2546-2552.	4.0	3
10	Energyâ€Storage Materials: Why Celluloseâ€Based Electrochemical Energy Storage Devices? (Adv. Mater.) Tj ET	Qq0 0 0 rg 11.1	gBT_/Overlock
11	Enhancing corrosion resistance, hardness, and crack resistance in magnetron sputtered high entropy CoCrFeMnNi coatings by adding carbon. Materials and Design, 2021, 205, 109711.	3.3	24
12	Probing Electrochemical Potential Differences over the Solid/Liquid Interface in Li-Ion Battery Model Systems. ACS Applied Materials & Interfaces, 2021, 13, 32989-32996.	4.0	6
13	Influence of the nitrogen content on the corrosion resistances of multicomponent AlCrNbYZrN coatings. Corrosion Science, 2021, 188, 109557.	3.0	9
14	Firstâ€Cycle Oxidative Generation of Lithium Nucleation Sites Stabilizes Lithiumâ€Metal Electrodes. Advanced Energy Materials, 2021, 11, 2003674.	10.2	18
15	Multi-component (Al,Cr,Nb,Y,Zr)N thin films by reactive magnetron sputter deposition for increased hardness and corrosion resistance. Thin Solid Films, 2020, 693, 137685.	0.8	41
16	Estimating Detection Limits of Potentiometric DNA Sensors Using Surface Plasmon Resonance Analyses. ACS Sensors, 2020, 5, 217-224.	4.0	9
17	Lighter and safer. Nature Energy, 2020, 5, 739-740.	19.8	6

18On the Capacities of Freestanding Vanadium Pentoxideâ€"Carbon Nanotubeâ€"Nanocellulose Paper
Electrodes for Charge Storage Applications. Energy Technology, 2020, 8, 2000731.1.8

#	Article	IF	CITATIONS
19	Effect of nitrogen content on microstructure and corrosion resistance of sputter-deposited multicomponent (TiNbZrTa)Nx films. Surface and Coatings Technology, 2020, 404, 126485.	2.2	16
20	Seeded Growth of Large-Area Arrays of Substrate Supported Au Nanoparticles Using Citrate and Hydrogen Peroxide. Langmuir, 2020, 36, 6848-6858.	1.6	4
21	Microstructure and mechanical, electrical, and electrochemical properties of sputter-deposited multicomponent (TiNbZrTa)Nx coatings. Surface and Coatings Technology, 2020, 389, 125651.	2.2	37
22	Capacity Limiting Effects for Freestanding, Monolithic TiO ₂ Nanotube Electrodes with High Mass Loadings. ACS Applied Energy Materials, 2020, 3, 4638-4649.	2.5	17
23	Looking for the Lost Lithium: Lithium Trapping and Its Effect on Capacity Losses in Li-Ion Batteries. ECS Meeting Abstracts, 2020, MA2020-01, 415-415.	0.0	0
24	Tailoring the Microstructure and Electrochemical Performance of 3D Microbattery Electrodes Based on Carbon Foams. Energy Technology, 2019, 7, 1900797.	1.8	10
25	<i>Cladophora</i> Cellulose: Unique Biopolymer Nanofibrils for Emerging Energy, Environmental, and Life Science Applications. Accounts of Chemical Research, 2019, 52, 2232-2243.	7.6	76
26	On the Capacity Losses Seen for Optimized Nano‣i Composite Electrodes in Liâ€Metal Halfâ€Cells. Advanced Energy Materials, 2019, 9, 1901608.	10.2	32
27	Structural Changes of Mercaptohexanol Self-Assembled Monolayers on Gold and Their Influence on Impedimetric Aptamer Sensors. Analytical Chemistry, 2019, 91, 14697-14704.	3.2	52
28	Flexible Freestanding MoO 3â^' x –Carbon Nanotubes–Nanocellulose Paper Electrodes for Chargeâ€ S torage Applications. ChemSusChem, 2019, 12, 5157-5163.	3.6	20
29	Cellulose Separators With Integrated Carbon Nanotube Interlayers for Lithium-Sulfur Batteries: An Investigation into the Complex Interplay between Cell Components. Journal of the Electrochemical Society, 2019, 166, A3235-A3241.	1.3	17
30	Double-sided conductive separators for lithium-metal batteries. Energy Storage Materials, 2019, 21, 464-473.	9.5	34
31	Planar lithium. Materials Today, 2019, 24, 119-120.	8.3	0
32	High-conductivity reduced-graphene-oxide/copper aerogel for energy storage. Nano Energy, 2019, 60, 760-767.	8.2	42
33	Polydopamine-based redox-active separators for lithium-ion batteries. Journal of Materiomics, 2019, 5, 204-213.	2.8	20
34	Sandwich-structured nano/micro fiber-based separators for lithium metal batteries. Nano Energy, 2019, 55, 316-326.	8.2	84
35	Revisiting the factors influencing gold electrodes prepared using cyclic voltammetry. Sensors and Actuators B: Chemical, 2019, 283, 146-153.	4.0	32
36	Molybdenum Oxide Nanosheets with Tunable Plasmonic Resonance: Aqueous Exfoliation Synthesis and Charge Storage Applications. Advanced Functional Materials, 2019, 29, 1806699.	7.8	55

#	Article	IF	CITATIONS
37	(Invited) Design of the Separators for Li-Ion and Lithium Metal Batteries. ECS Meeting Abstracts, 2019, ,	0.0	0
38	(Plenary) Separators As a Tool for Enhanced Battery Performance. ECS Meeting Abstracts, 2019, , .	0.0	0
39	Lithium Trapping in Microbatteries Based on Lithium―and Cu ₂ Oâ€Coated Copper Nanorods. ChemistrySelect, 2018, 3, 2311-2314.	0.7	8
40	Nanocellulose Modified Polyethylene Separators for Lithium Metal Batteries. Small, 2018, 14, e1704371.	5.2	130
41	Conducting polymer paper-derived separators for lithium metal batteries. Energy Storage Materials, 2018, 13, 283-292.	9.5	64
42	Sizeâ€Dependent Electrochemical Performance of Monolithic Anatase TiO ₂ Nanotube Anodes for Sodiumâ€ion Batteries. ChemElectroChem, 2018, 5, 674-684.	1.7	18
43	Redoxâ€Active Separators for Lithiumâ€lon Batteries. Advanced Science, 2018, 5, 1700663.	5.6	48
44	Synthesis and characterization of multicomponent (CrNbTaTiW)C films for increased hardness and corrosion resistance. Materials and Design, 2018, 149, 51-62.	3.3	99
45	Toward Solid-State 3D-Microbatteries Using Functionalized Polycarbonate-Based Polymer Electrolytes. ACS Applied Materials & Interfaces, 2018, 10, 2407-2413.	4.0	25
46	Lightweight, Thin, and Flexible Silver Nanopaper Electrodes for Highâ€Capacity Dendriteâ€Free Sodium Metal Anodes. Advanced Functional Materials, 2018, 28, 1804038.	7.8	73
47	Conducting Polymer Paper-Derived Mesoporous 3D N-doped Carbon Current Collectors for Na and Li Metal Anodes: A Combined Experimental and Theoretical Study. Journal of Physical Chemistry C, 2018, 122, 23352-23363.	1.5	27
48	Dendrite-free lithium electrode cycling via controlled nucleation in low LiPF6 concentration electrolytes. Materials Today, 2018, 21, 1010-1018.	8.3	45
49	Nanocellulose Structured Paper-Based Lithium Metal Batteries. ACS Applied Energy Materials, 2018, 1, 4341-4350.	2.5	45
50	Towards Li-Ion Batteries Operating at 80 °C: Ionic Liquid versus Conventional Liquid Electrolytes. Batteries, 2018, 4, 2.	2.1	14
51	Lithium Trapping in Alloy Forming Electrodes and Current Collectors for Lithium Based Batteries. ECS Meeting Abstracts, 2018, , .	0.0	0
52	(Invited) Electrochemical Manufacturing and Characterisation of Nanostructured Electrodes for Lithium Based Batteries. ECS Meeting Abstracts, 2018, , .	0.0	0
53	Photoelectron Spectroscopic Evidence for Overlapping Redox Reactions for SnO ₂ Electrodes in Lithium-Ion Batteries. Journal of Physical Chemistry C, 2017, 121, 4924-4936.	1.5	31
54	Elevated Temperature Lithium-Ion Batteries Containing SnO ₂ Electrodes and LiTFSI-Pip ₁₄ TFSI Ionic Liquid Electrolyte. Journal of the Electrochemical Society, 2017, 164, A701-A708.	1.3	4

#	Article	IF	CITATIONS
55	Celluloseâ€based Supercapacitors: Material and Performance Considerations. Advanced Energy Materials, 2017, 7, 1700130.	10.2	175
56	Lithium trapping in alloy forming electrodes and current collectors for lithium based batteries. Energy and Environmental Science, 2017, 10, 1350-1357.	15.6	152
57	Thickness difference induced pore structure variations in cellulosic separators for lithium-ion batteries. Cellulose, 2017, 24, 2903-2911.	2.4	53
58	Influence of Nanoeffects on the Oxidation of Cr–C/Ag Thin Films Containing Silver Nanoparticles. ChemElectroChem, 2017, 4, 418-429.	1.7	7
59	Over‣toichiometric NbO ₂ Nanoparticles for a High Energy and Power Density Lithium Microbattery. ChemNanoMat, 2017, 3, 646-655.	1.5	19
60	Systematic Approach to the Development of Microfabricated Biosensors: Relationship between Gold Surface Pretreatment and Thiolated Molecule Binding. ACS Applied Materials & Interfaces, 2017, 9, 26610-26621.	4.0	17
61	Overlapping and rate controlling electrochemical reactions for tin(IV) oxide electrodes in lithium-ion batteries. Journal of Electroanalytical Chemistry, 2017, 797, 47-60.	1.9	14
62	Breaking Down a Complex System: Interpreting PES Peak Positions for Cycled Li-Ion Battery Electrodes. Journal of Physical Chemistry C, 2017, 121, 27303-27312.	1.5	33
63	Mesoporous Cladophora cellulose separators for lithium-ion batteries. Journal of Power Sources, 2016, 321, 185-192.	4.0	98
64	Boosting the thermal stability of emulsion-templated polymers via sulfonation: an efficient synthetic route to hierarchically porous carbon foams. ChemistrySelect, 2016, 1, 784-792.	0.7	14
65	Bioelectrodes based on pseudocapacitive cellulose/polypyrrole composite improve performance of biofuel cell. Bioelectrochemistry, 2016, 112, 184-190.	2.4	23
66	Solution-processed poly(3,4-ethylenedioxythiophene) nanocomposite paper electrodes for high-capacitance flexible supercapacitors. Journal of Materials Chemistry A, 2016, 4, 1714-1722.	5.2	114
67	Conducting Polymer Paperâ€Based Cathodes for Highâ€Areal apacity Lithium–Organic Batteries. Energy Technology, 2015, 3, 563-569.	1.8	21
68	Flexible freestanding Cladophora nanocellulose paper based Si anodes for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 14109-14115.	5.2	91
69	Asymmetric supercapacitors based on carbon nanofibre and polypyrrole/nanocellulose composite electrodes. RSC Advances, 2015, 5, 16405-16413.	1.7	54
70	Nanocellulose coupled flexible polypyrrole@graphene oxide composite paper electrodes with high volumetric capacitance. Nanoscale, 2015, 7, 3418-3423.	2.8	117
71	On the electrochemistry of tin oxide coated tin electrodes in lithium-ion batteries. Electrochimica Acta, 2015, 179, 482-494.	2.6	21
72	Dispersed Gold Nanoparticles Supported in the Pores of Siliceous Mesocellular Foam: A Catalyst for Cycloisomerization of Alkynoic Acids to γâ€Alkylidene Lactones. European Journal of Organic Chemistry, 2015, 2015, 2250-2255.	1.2	12

#	Article	IF	CITATIONS
73	Asymmetric and symmetric supercapacitors based on polypyrrole and activated carbon electrodes. Synthetic Metals, 2015, 203, 192-199.	2.1	44
74	Surface Modified Nanocellulose Fibers Yield Conducting Polymer-Based Flexible Supercapacitors with Enhanced Capacitances. ACS Nano, 2015, 9, 7563-7571.	7.3	229
75	Electrochemical fabrication and characterization of Cu/Cu ₂ O multi-layered micro and nanorods in Li-ion batteries. Nanoscale, 2015, 7, 13591-13604.	2.8	29
76	Biosupercapacitors for powering oxygen sensing devices. Bioelectrochemistry, 2015, 106, 34-40.	2.4	47
77	Towards high throughput corrosion screening using arrays of bipolar electrodes. Journal of Electroanalytical Chemistry, 2015, 747, 77-82.	1.9	42
78	Hybrid Energy Storage Devices Based on Monolithic Electrodes Containing Well-defined TiO2 Nanotube Size Gradients. Electrochimica Acta, 2015, 176, 1393-1402.	2.6	28
79	Pseudocapacitive polypyrrole–nanocellulose composite for sugar-air enzymatic fuel cells. Electrochemistry Communications, 2015, 50, 55-59.	2.3	35
80	A Li-Ion Microbattery with 3D Electrodes of Different Geometries. ECS Electrochemistry Letters, 2014, 3, A54-A57.	1.9	11
81	Self-discharge Reactions in Energy Storage Devices Based on Polypyrrole-cellulose Composite Electrodes. Green, 2014, 4, .	0.4	9
82	Activation Barriers Provide Insight into the Mechanism of Self-Discharge in Polypyrrole. Journal of Physical Chemistry C, 2014, 118, 29643-29649.	1,5	17
83	Tailoring porosities and electrochemical properties of composites composed of microfibrillated cellulose and polypyrrole. RSC Advances, 2014, 4, 8489-8497.	1.7	15
84	Influence of deposition temperature and amorphous carbon on microstructure and oxidation resistance of magnetron sputtered nanocomposite CrC films. Applied Surface Science, 2014, 305, 143-153.	3.1	43
85	On the Evaluation of Corrosion Resistances of Amorphous Chromium-Carbon Thin-Films. Electrochimica Acta, 2014, 122, 224-233.	2.6	29
86	Electrodeposition of Vanadium Oxide/Manganese Oxide Hybrid Thin Films on Nanostructured Aluminum Substrates. Journal of the Electrochemical Society, 2014, 161, D515-D521.	1.3	19
87	Cooxidant-free TEMPO-mediated oxidation of highly crystalline nanocellulose in water. RSC Advances, 2014, 4, 52289-52298.	1.7	55
88	Benzenediacrylates as organic battery electrode materials: Na versus Li. RSC Advances, 2014, 4, 38004-38011.	1.7	55
89	The impact of size effects on the electrochemical behaviour of Cu2O-coated Cu nanopillars for advanced Li-ion microbatteries. Journal of Materials Chemistry A, 2014, 2, 9574.	5.2	52
90	The influence of electrode and separator thickness on the cell resistance of symmetric cellulose–polypyrrole-based electric energy storage devices. Journal of Power Sources, 2014, 272, 468-475.	4.0	31

#	Article	IF	CITATIONS
91	High areal and volumetric capacity sustainable all-polymer paper-based supercapacitors. Journal of Materials Chemistry A, 2014, 2, 16761-16769.	5.2	88
92	The Buried Carbon/Solid Electrolyte Interphase in Li-ion Batteries Studied by Hard X-ray Photoelectron Spectroscopy. Electrochimica Acta, 2014, 138, 430-436.	2.6	62
93	On the origin of the capacity fading for aluminium negative electrodes in Li-ion batteries. Journal of Power Sources, 2014, 269, 266-273.	4.0	38
94	Freestanding nanocellulose-composite fibre reinforced 3D polypyrrole electrodes for energy storage applications. Nanoscale, 2014, 6, 13068-13075.	2.8	91
95	Efficient high active mass paper-based energy-storage devices containing free-standing additive-less polypyrrole–nanocellulose electrodes. Journal of Materials Chemistry A, 2014, 2, 7711-7716.	5.2	62
96	Nanosized LiFePO ₄ -decorated emulsion-templated carbon foam for 3D micro batteries: a study of structure and electrochemical performance. Nanoscale, 2014, 6, 8804-8813.	2.8	27
97	On the electrophoretic and sol–gel deposition of active materials on aluminium rod current collectors for three-dimensional Li-ion micro-batteries. Thin Solid Films, 2014, 562, 63-69.	0.8	15
98	Electrochemical elaboration of electrodes and electrolytes for 3D structured batteries. Journal of Materials Chemistry A, 2013, 1, 9281.	5.2	37
99	Bipolar electrochemistry for high-throughput corrosion screening. Electrochemistry Communications, 2013, 34, 274-277.	2.3	48
100	High energy and power density TiO2 nanotube electrodes for 3D Li-ion microbatteries. Journal of Materials Chemistry A, 2013, 1, 8160.	5.2	101
101	Cation profiling of passive films on stainless steel formed in sulphuric and acetic acid by deconvolution of angle-resolved X-ray photoelectron spectra. Applied Surface Science, 2013, 284, 700-714.	3.1	22
102	A Comparative Study of the Effects of Rinsing and Aging of Polypyrrole/Nanocellulose Composites on Their Electrochemical Properties. Journal of Physical Chemistry B, 2013, 117, 3900-3910.	1.2	23
103	Corrosion resistances and passivation of powder metallurgical and conventionally cast 316L and 2205 stainless steels. Corrosion Science, 2013, 67, 268-280.	3.0	41
104	Towards Chip-Based Salinity Measurements for Small Submersibles and Biologgers. International Journal of Oceanography, 2013, 2013, 1-11.	0.2	8
105	Haemocompatibility and ion exchange capability of nanocellulose polypyrrole membranes intended for blood purification. Journal of the Royal Society Interface, 2012, 9, 1943-1955.	1.5	69
106	[P1.028] Development of Nanocellulose/Polypyrrole Composites Towards Blood Purification. Procedia Engineering, 2012, 44, 733-736.	1.2	5
107	Manufacturing of anisotropic particles by site specific oxidation of thiols. Journal of Materials Chemistry, 2012, 22, 7681.	6.7	9
108	Electrochemical Synthesis of Gold and Protein Gradients on Particle Surfaces. Langmuir, 2012, 28, 10318-10323.	1.6	6

#	Article	IF	CITATIONS
109	Degradation effects in the extraction of antioxidants from birch bark using water at elevated temperature and pressure. Analytica Chimica Acta, 2012, 716, 40-48.	2.6	23
110	Synthesis and characterization of a ferrocene-linked bis-fullerene[60] dumbbell. Dalton Transactions, 2012, 41, 2374.	1.6	16
111	Electroactive nanofibrillated cellulose aerogel composites with tunable structural and electrochemical properties. Journal of Materials Chemistry, 2012, 22, 19014.	6.7	136
112	<i>In vitro</i> and <i>in vivo</i> toxicity of rinsed and aged nanocellulose–polypyrrole composites. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2128-2138.	2.1	89
113	Paperâ€Based Energyâ€Storage Devices Comprising Carbon Fiberâ€Reinforced Polypyrroleâ€Cladophora Nanocellulose Composite Electrodes. Advanced Energy Materials, 2012, 2, 445-454.	10.2	154
114	Influence of the cellulose substrate on the electrochemical properties of paper-based polypyrrole electrode materials. Journal of Materials Science, 2012, 47, 5317-5325.	1.7	51
115	Rapid potential step charging of paper-based polypyrrole energy storage devices. Electrochimica Acta, 2012, 70, 91-97.	2.6	60
116	Deposition and characterization of magnetron sputtered amorphous Cr–C films. Vacuum, 2012, 86, 1408-1416.	1.6	77
117	Fabrication of boron doped diamond microband electrodes for electrochemical detection in a microfluidic channel. Diamond and Related Materials, 2011, 20, 1121-1124.	1.8	13
118	Electrodeposition as a Tool for 3D Microbattery Fabrication. Electrochemical Society Interface, 2011, 20, 41-46.	0.3	55
119	Cycling stability and self-protective properties of a paper-based polypyrrole energy storage device. Electrochemistry Communications, 2011, 13, 869-871.	2.3	73
120	Toward Flexible Polymer and Paperâ€Based Energy Storage Devices. Advanced Materials, 2011, 23, 3751-3769.	11.1	919
121	Galvanostatic electrodeposition of aluminium nano-rods for Li-ion three-dimensional micro-battery current collectors. Electrochimica Acta, 2011, 56, 3203-3208.	2.6	55
122	Electrochemically Controlled Separation of DNA Oligomers with High Surface Area Conducting Paper Electrode. ECS Transactions, 2011, 35, 135-142.	0.3	8
123	Current Instability for Silicon Nanowire Field-Effect Sensors Operating in Electrolyte with Platinum Gate Electrodes. Electrochemical and Solid-State Letters, 2011, 14, J34.	2.2	19
124	Long Cycle Life Nanocellulose Polypyrrole Electrodes. Materials Research Society Symposia Proceedings, 2011, 1312, 1.	0.1	0
125	High-Capacity Conductive Nanocellulose Paper Sheets for Electrochemically Controlled Extraction of DNA Oligomers. PLoS ONE, 2011, 6, e29243.	1.1	58
126	Voltammetric Determination of <scp>L</scp> â€Dopa on Poly(3,4â€ethylenedioxythiophene)‧ingleâ€Walled Carbon Nanotube Composite Modified Microelectrodes. Electroanalysis, 2010, 22, 449-454.	1.5	17

#	Article	IF	CITATIONS
127	A Nanocellulose Polypyrrole Composite Based on Microfibrillated Cellulose from Wood. Journal of Physical Chemistry B, 2010, 114, 4178-4182.	1.2	258
128	Spatial Mapping of Elemental Distributions in Polypyrrole-Cellulose Nanofibers using Energy-Filtered Transmission Electron Microscopy. Journal of Physical Chemistry B, 2010, 114, 13644-13649.	1.2	22
129	The Salt and Paper Battery; Ultrafast and All-polymer Based. Materials Research Society Symposia Proceedings, 2009, 1197, 60.	0.1	1
130	The Mechanism of Capacity Enhancement in LiFePO[sub 4] Cathodes Through Polyetheramine Coating. Journal of the Electrochemical Society, 2009, 156, A720.	1.3	23
131	Combined Extraction and Electrochemical Detection of Amines and Phenols Using Microelectrodes in Organic Solvents. Electroanalysis, 2009, 21, 1211-1214.	1.5	2
132	Potential controlled anion absorption in a novel high surface area composite of Cladophora cellulose and polypyrrole. Electrochimica Acta, 2009, 54, 3394-3401.	2.6	53
133	Potential and Current Density Distributions at Electrodes Intended for Bipolar Patterning. Analytical Chemistry, 2009, 81, 453-459.	3.2	73
134	Oxidation of 4-Chloroaniline Studied by On-Line Electrochemistry Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2009, 81, 5180-5187.	3.2	23
135	Identification and Characterization of Polyphenolic Antioxidants Using On-Line Liquid Chromatography, Electrochemistry, and Electrospray Ionization Tandem Mass Spectrometry. Analytical Chemistry, 2009, 81, 8968-8977.	3.2	38
136	Self-Supported Three-Dimensional Nanoelectrodes for Microbattery Applications. Nano Letters, 2009, 9, 3230-3233.	4.5	226
137	Ultrafast All-Polymer Paper-Based Batteries. Nano Letters, 2009, 9, 3635-3639.	4.5	422
138	Influence of the Type of Oxidant on Anion Exchange Properties of Fibrous Cladophora Cellulose/Polypyrrole Composites. Journal of Physical Chemistry B, 2009, 113, 426-433.	1.2	60
139	Ionic Motion in Polypyrroleâ^'Cellulose Composites: Trap Release Mechanism during Potentiostatic Reduction. Journal of Physical Chemistry B, 2009, 113, 4582-4589.	1.2	30
140	Thin films of Cu2Sb and Cu9Sb2 as anode materials in Li-ion batteries. Electrochimica Acta, 2008, 53, 7226-7234.	2.6	45
141	Formation of Molecular Gradients on Bipolar Electrodes. Angewandte Chemie - International Edition, 2008, 47, 3034-3036.	7.2	122
142	Current oscillations during chronoamperometric and cyclic voltammetric measurements in alkaline Cu(II)-citrate solutions. Electrochimica Acta, 2008, 53, 2188-2197.	2.6	23
143	Direct electrodeposition of aluminium nano-rods. Electrochemistry Communications, 2008, 10, 1467-1470.	2.3	86
144	A Novel High Specific Surface Area Conducting Paper Material Composed of Polypyrrole and Cladophora Cellulose. Journal of Physical Chemistry B, 2008, 112, 12249-12255.	1.2	120

#	Article	IF	CITATIONS
145	On-Chip Electric Field Driven Electrochemical Detection Using a Poly(dimethylsiloxane) Microchannel with Gold Microband Electrodes. Analytical Chemistry, 2008, 80, 3622-3632.	3.2	79
146	Pulsed Galvanostatic and Potentiostatic Electrodeposition of Cu and Cu[sub 2]O Nanolayers from Alkaline Cu(II)-Citrate Solutions. Journal of the Electrochemical Society, 2008, 155, D115.	1.3	21
147	Electrodeposited Sb and Sb/Sb2O3Nanoparticle Coatings as Anode Materials for Li-Ion Batteries. Chemistry of Materials, 2007, 19, 1170-1180.	3.2	171
148	Electrodeposition and electrochemical characterisation of thick and thin coatings of Sb and Sb/Sb2O3 particles for Li-ion battery anodes. Electrochimica Acta, 2007, 53, 1062-1073.	2.6	39
149	Lithium Insertion into Vanadium Oxide Nanotubes:Â Electrochemical and Structural Aspects. Chemistry of Materials, 2006, 18, 495-503.	3.2	84
150	The influence of the thin-layer flow cell design on the mass spectra when coupling electrochemistry to electrospray ionisation mass spectrometry. Journal of Electroanalytical Chemistry, 2006, 590, 90-99.	1.9	20
151	On the origin of the spontaneous potential oscillations observed during galvanostatic deposition of layers of Cu and Cu2O in alkaline citrate solutions. Journal of Electroanalytical Chemistry, 2006, 594, 35-49.	1.9	31
152	Electrochemical techniques for lab-on-a-chip applications. Analyst, The, 2005, 130, 599.	1.7	136
153	Ligand exchange upon oxidation of a dinuclear Mn complex–detection of structural changes by FT-IR spectroscopy and ESI-MS. Dalton Transactions, 2005, , 1033-1041.	1.6	42
154	On-line coupling of a microelectrode array equipped poly(dimethylsiloxane) microchip with an integrated graphite electrospray emitter for electrospray ionisation mass spectrometry. Lab on A Chip, 2005, 5, 1008.	3.1	33
155	On-line electrochemically controlled solid-phase extraction interfaced to electrospray and inductively coupled plasma mass spectrometry. Analyst, The, 2005, 130, 1358.	1.7	27
156	Capillary electrophoresis coupled to mass spectrometry from a polymer modified poly(dimethylsiloxane) microchip with an integrated graphite electrospray tip. Analyst, The, 2005, 130, 193-199.	1.7	63
157	Interference of the electrospray voltage on chromatographic separations using porous graphitic carbon columns. Journal of Mass Spectrometry, 2004, 39, 216-222.	0.7	22
158	A Setup for the Coupling of a Thin-Layer Electrochemical Flow Cell to Electrospray Mass Spectrometry. Analytical Chemistry, 2004, 76, 2017-2024.	3.2	41
159	In situ pH measurement of the self-oscillating Cu(II)–lactate system using an electropolymerised polyaniline film as a micro pH sensor. Journal of Electroanalytical Chemistry, 2003, 547, 45-52.	1.9	35
160	Gold-coated fused-silica sheathless electrospray emitters based on vapor-deposited titanium adhesion layers. Rapid Communications in Mass Spectrometry, 2003, 17, 1535-1540.	0.7	20
161	Separation High Voltage Field Driven On-Chip Amperometric Detection in Capillary Electrophoresis. Analytical Chemistry, 2003, 75, 1245-1250.	3.2	55
162	Patterned Generation of Reactive Thiolsulfinates/Thiolsulfonates on Silicon Oxide by Electrooxidation Using Electromicrocontact Printing. Langmuir, 2003, 19, 10267-10270.	1.6	13

#	Article	IF	CITATIONS
163	Sheathless Electrospray from Polymer Microchips. Analytical Chemistry, 2003, 75, 3934-3940.	3.2	67
164	Generation of Thiolsulfinates/Thiolsulfonates by Electrooxidation of Thiols on Silicon Surfaces for Reversible Immobilization of Molecules. Langmuir, 2003, 19, 4217-4221.	1.6	27
165	Electrochemically controlled solid-phase microextraction and preconcentration using polypyrrole coated microarray electrodes in a flow system. Analyst, The, 2003, 128, 232-236.	1.7	45
166	Chromatographic behaviour of oxidised porous graphitic carbon columns. Analyst, The, 2003, 128, 844-848.	1.7	33
167	A comparison of the electrochemical stabilities of metal, polymer and graphite coated nanospray emitters. Analyst, The, 2003, 128, 728.	1.7	17
168	Electrochemical solid-phase microextraction of anions and cations using polypyrrole coatings and an integrated three-electrode device. Analyst, The, 2002, 127, 591-597.	1.7	49
169	Deviceless decoupled electrochemical detection of catecholamines in capillary electrophoresis using gold microband array electrodes. Electrophoresis, 2002, 23, 3678-3682.	1.3	23
170	Evaluations of the Stability of Sheathless Electrospray Ionization Mass Spectrometry Emitters Using Electrochemical Techniques. Analytical Chemistry, 2001, 73, 4607-4616.	3.2	26
171	Elimination of High-Voltage Field Effects in End Column Electrochemical Detection in Capillary Electrophoresis by Use of On-Chip Microband Electrodes. Analytical Chemistry, 2001, 73, 1909-1915.	3.2	57
172	A simple and robust conductive graphite coating for sheathless electrospray emitters used in capillary electrophoresis/mass spectrometry. Rapid Communications in Mass Spectrometry, 2001, 15, 1997-2000.	0.7	101
173	Coulometric and spectroscopic investigations of the oxidation and reduction of some azosalicylic acids at glassy carbon electrodes. Electrochimica Acta, 2001, 46, 1113-1129.	2.6	23
174	A simple and robust conductive graphite coating for sheathless electrospray emitters used in capillary electrophoresis/mass spectrometry. Rapid Communications in Mass Spectrometry, 2001, 15, 1997-2000.	0.7	1
175	Characterization of the atmospheric pressure ionization mass spectrometric process obtained using a fused-silica emitter with the high voltage applied upstream. , 2000, 35, 330-336.		3
176	Electrochemical Detection Based on Redox Cycling Using Interdigitated Microarray Electrodes at ÂμL/min Flow Rates. Electroanalysis, 2000, 12, 255-261.	1.5	27
177	A comparison of the electrochemical properties of some azosalicylic acids at glassy carbon electrodes by cyclic and hydrodynamic voltammetry. Electrochimica Acta, 1999, 44, 4029-4040.	2.6	34
178	Application of microband array electrodes for end-column electrochemical detection in capillary electrophoresis. Analytica Chimica Acta, 1999, 385, 409-415.	2.6	20
179	Comparison of μm and mm sized disk electrodes for end-column electrochemical detection in capillary electrophoresis. Fresenius' Journal of Analytical Chemistry, 1999, 363, 231-235.	1.5	17
180	Determination of tocopherols and vitamin A in vegetable oils using packed capillary column supercritical fluid chromatography with electrochemical detection. Journal of Separation Science, 1999, 11, 385-391.	1.0	17

#	Article	IF	CITATIONS
181	Amperometric determination of the water content in acetone, butter and margarine using a wall-tube platinum microelectrode in a flow injection system. Analyst, The, 1999, 124, 143-146.	1.7	9
182	Influence of Mixed Diffusional, Migrational, and Convective Mass Transport on the Response of a Wall-Tube Microelectrode in a Flow Injection System. Analytical Chemistry, 1999, 71, 4926-4931.	3.2	6
183	Self-Assembled Monolayers of Cystamine and Cysteamine on Gold Studied by XPS and Voltammetry. Langmuir, 1999, 15, 6370-6378.	1.6	228
184	End-Column Amperometric Detection in Capillary Electrophoresis:Â Influence of Separation-Related Parameters on the Observed Half-Wave Potential for Dopamine and Catechol. Analytical Chemistry, 1999, 71, 544-549.	3.2	127
185	A Comparative Study of the Oxidation of 3-, 4- and 5-Aminosalicylic Acids at Glassy Carbon Electrodes. Electroanalysis, 1998, 10, 198-203.	1.5	18
186	On-line deoxygenation for reductive electrochemical detection of artemisinin and dihydroartemisinin in liquid chromatography. Analyst, The, 1998, 123, 313-317.	1.7	14
187	Development of an Amperometric Detector for Packed Capillary Column Supercritical Fluid Chromatography. Analytical Chemistry, 1997, 69, 439-445.	3.2	20
188	Neutral cyclodextrins as chiral agents for enantiomeric separations of chromanes in capillary electrophoresis. Chromatographia, 1997, 44, 313-319.	0.7	8
189	Electrochemical detection of disodium 3,3′-azobis-(6-hydroxy-) benzoate (olsalazine sodium). Electroanalysis, 1997, 9, 1291-1293.	1.5	2
190	Polymethacryloxypropylhydrosiloxane deactivation as pretreatment of polymer-coated fused silica columns for capillary electrophoresis. , 1997, 9, 73-80.		10
191	Oxidative and reductive amperometric detection of phenolic and nitroaromatic compounds in packed capillary column supercritical fluid chromatography. Journal of Chromatography A, 1997, 785, 121-128.	1.8	18
192	A microelectrochemical detector for use at low linear velocities in capillary column systems. Analytica Chimica Acta, 1997, 344, 77-85.	2.6	16
193	Mass transport-controlled steady-state currents for methanol in a flow injection system. Analyst, The, 1996, 121, 1869.	1.7	7
194	Stripping voltammetry at preplated mercury coated microelectrodes in flowing solutions. Analytica Chimica Acta, 1996, 325, 11-24.	2.6	9
195	Stability of preplated mercury coated platinum and carbon fibre microelectrodes. Analytica Chimica Acta, 1996, 327, 211-222.	2.6	20
196	Determination of selenium in freshwaters by cathodic stripping voltammetry after UV irradiation. Talanta, 1995, 42, 817-825.	2.9	45
197	Electrochemical detection in open tubular column supercritical fluid chromatography using a platinum microelectrode and CO2/water as mobile phase. Journal of Separation Science, 1994, 6, 495-501.	1.0	12
198	Cathodic stripping voltammetry of HgSe. Journal of Electroanalytical Chemistry, 1994, 377, 149-162.	1.9	21

#	Article	IF	CITATIONS
199	Cathodic stripping voltammetry of Cu2Se at mercury electrodes. Journal of Electroanalytical Chemistry, 1994, 379, 49-61.	1.9	38
200	Wide pH range microelectrode study of the electrochemical behaviour of polyaniline films in buffered solutions. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 149.	1.7	31
201	Anodic stripping voltammetry of copper at ex situ-formed mercury-coated carbon fibre microelectrodes in the presence of low concentrations of supportin. Analytica Chimica Acta, 1993, 273, 41-51.	2.6	26
202	Electrocrystallization, stripping and photoelectrochemical properties of HgSe/Se films on mercury electrodes. Journal of Electroanalytical Chemistry, 1993, 347, 303-326.	1.9	23
203	Redox switching of polyaniline films: Low temperature studies. Synthetic Metals, 1993, 55, 1515-1520.	2.1	17
204	Microelectrode studies of the switching of polyaniline films in unbuffered and buffered solutions. Synthetic Metals, 1993, 55, 1509-1514.	2.1	10
205	Ion exchange and memory effects in polyaniline. Synthetic Metals, 1993, 55, 1545-1551.	2.1	45
206	Chronopotentiometric studies of polyaniline films. Journal of Electroanalytical Chemistry, 1992, 325, 269-284.	1.9	69
207	An ultramicroelectrode study of low temperature redox switching of polyaniline films in HClO4 · 5.5 H2O. Journal of Electroanalytical Chemistry, 1992, 332, 315-323.	1.9	32
208	Microelectrodes for anodic stripping voltammetry prepared by heat sealing thin fibres or wires in a polypropylene matrix. Analytica Chimica Acta, 1992, 257, 7-13.	2.6	38
209	A microelectrode study of the influence of pH and solution composition on the electrochemical behaviour of polyaniline films. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 313, 271-289.	0.3	153
210	Photoelectrochemical properties of polyaniline films. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 310, 113-126.	0.3	24
211	Precise polarographic determination of the stability constants of cadmium and lead with oxalate and sulphate. Analytica Chimica Acta, 1989, 223, 429-440.	2.6	10
212	Potential step chronocoulometric procedure for the conversion of quasireversible waves into reversible ones. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 269, 27-40.	0.3	8
213	Equilibrium and kinetic properties of the complexation reactions of copper(II) with aspartic acid. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 269, 41-51.	0.3	3
214	Multimode triple sampling polarography in the study of amalgamation and sphericity effects at the static mercury drop electrode. Analytical Chemistry, 1987, 59, 2383-2390.	3.2	12
215	Precision in current responses and half-wave potentials for some common pulse polarographic methods. Analytical Chemistry, 1986, 58, 1959-1964.	3.2	4
216	Precision in differential pulse and alternate drop differential pulse polarography. Analytical Chemistry, 1984, 56, 1209-1214.	3.2	12