SÃ-lvia A Sousa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2055950/publications.pdf

Version: 2024-02-01

46 papers

1,274 citations

394421 19 h-index 35 g-index

48 all docs

48 docs citations

48 times ranked 1268 citing authors

#	Article	IF	CITATIONS
1	Studies on the Involvement of the Exopolysaccharide Produced by Cystic Fibrosis-Associated Isolates of the Burkholderia cepacia Complex in Biofilm Formation and in Persistence of Respiratory Infections. Journal of Clinical Microbiology, 2004, 42, 3052-3058.	3.9	117
2	<i>Burkholderia cepacia</i> Complex: Emerging Multihost Pathogens Equipped with a Wide Range of Virulence Factors and Determinants. International Journal of Microbiology, 2011, 2011, 1-9.	2.3	96
3	Pathogenicity, virulence factors, and strategies to fight against Burkholderia cepacia complex pathogens and related species. Applied Microbiology and Biotechnology, 2010, 87, 31-40.	3.6	94
4	Distribution of Cepacian Biosynthesis Genes among Environmental and Clinical <i>Burkholderia</i> Strains and Role of Cepacian Exopolysaccharide in Resistance to Stress Conditions. Applied and Environmental Microbiology, 2010, 76, 441-450.	3.1	88
5	Identification and physical organization of the gene cluster involved in the biosynthesis of Burkholderia cepacia complex exopolysaccharide. Biochemical and Biophysical Research Communications, 2003, 312, 323-333.	2.1	76
6	Variation of the antimicrobial susceptibility profiles of Burkholderia cepacia complex clonal isolates obtained from chronically infected cystic fibrosis patients: a five-year survey in the major Portuguese treatment center. European Journal of Clinical Microbiology and Infectious Diseases, 2008, 27, 1101-1111.	2.9	71
7	Burkholderia puraquae sp. nov., a novel species of the Burkholderia cepacia complex isolated from hospital settings and agricultural soils. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 14-20.	1.7	66
8	Virulence of Burkholderia cepacia complex strains in gp91phoxâ^'/â^' mice. Cellular Microbiology, 2007, 9, 2817-2825.	2.1	65
9	Functional Analysis of Burkholderia cepacia Genes bceD and bceF, Encoding a Phosphotyrosine Phosphatase and a Tyrosine Autokinase, Respectively: Role in Exopolysaccharide Biosynthesis and Biofilm Formation. Applied and Environmental Microbiology, 2007, 73, 524-534.	3.1	63
10	The hfq gene is required for stress resistance and full virulence of Burkholderia cepacia to the nematode Caenorhabditis elegans. Microbiology (United Kingdom), 2010, 156, 896-908.	1.8	56
11	Burkholderia cepacia Complex Regulation of Virulence Gene Expression: A Review. Genes, 2017, 8, 43.	2.4	45
12	Hfq: a multifaceted RNA chaperone involved in virulence. Future Microbiology, 2016, 11, 137-151.	2.0	32
13	The Second RNA Chaperone, Hfq2, Is Also Required for Survival under Stress and Full Virulence of <i>Burkholderia cenocepacia</i>	2.2	29
14	The Burkholderia cepacia bceA gene encodes a protein with phosphomannose isomerase and GDP-d-mannose pyrophosphorylase activities. Biochemical and Biophysical Research Communications, 2007, 353, 200-206.	2.1	27
15	Burkholderia cenocepacia J2315 acyl carrier protein: A potential target for antimicrobials' development?. Microbial Pathogenesis, 2008, 45, 331-336.	2.9	25
16	Enhancing wastewater degradation and biogas production by intermittent operation of UASB reactors. Energy, 2011, 36, 2164-2168.	8.8	25
17	Gold(<scp>iii</scp>) bis(dithiolene) complexes: from molecular conductors to prospective anticancer, antimicrobial and antiplasmodial agents. Metallomics, 2020, 12, 974-987.	2.4	23
18	Antifungal, Antitumoral and Antioxidant Potential of the Danube Delta Nymphaea alba Extracts. Antibiotics, 2020, 9, 7.	3.7	22

#	Article	IF	Citations
19	Variation ofBurkholderia cenocepaciavirulence potential during cystic fibrosis chronic lung infection. Virulence, 2017, 8, 782-796.	4.4	20
20	Silver Camphor Imine Complexes: Novel Antibacterial Compounds from Old Medicines. Antibiotics, 2018, 7, 65.	3.7	20
21	On the path to gold: Monoanionic Au bisdithiolate complexes with antimicrobial and antitumor activities. Journal of Inorganic Biochemistry, 2020, 202, 110904.	3.5	17
22	Functional analysis of the Burkholderia cenocepacia J2315 BceAJ protein with phosphomannose isomerase and GDP-d-mannose pyrophosphorylase activities. Applied Microbiology and Biotechnology, 2008, 80, 1015-1022.	3.6	16
23	Antimicrobial Activity of Silver Camphorimine Complexes against Candida Strains. Antibiotics, 2019, 8, 144.	3.7	16
24	Immunization and Immunotherapy Approaches against Pseudomonas aeruginosa and Burkholderia cepacia Complex Infections. Vaccines, 2021, 9, 670.	4.4	15
25	Biochemical and Functional Studies on the Burkholderia cepacia Complex bceN Gene, Encoding a GDP-D-Mannose 4,6-Dehydratase. PLoS ONE, 2013, 8, e56902.	2.5	13
26	The Burkholderia cenocepacia K56-2 pleiotropic regulator Pbr, is required for stress resistance and virulence. Microbial Pathogenesis, 2010, 48, 168-177.	2.9	12
27	The Burkholderia cenocepacia OmpA-like protein BCAL2958: identification, characterization, and detection of anti-BCAL2958 antibodies in serum from B. cepacia complex-infected Cystic Fibrosis patients. AMB Express, 2016, 6, 41.	3.0	12
28	Regulation of Hfq mRNA and Protein Levels in Escherichia coli and Pseudomonas aeruginosa by the Burkholderia cenocepacia MtvR sRNA. PLoS ONE, 2014, 9, e98813.	2.5	10
29	Characterization of the Burkholderia cenocepacia J2315 Surface-Exposed Immunoproteome. Vaccines, 2020, 8, 509.	4.4	10
30	Investigations into the Structure/Antibacterial Activity Relationships of Cyclam and Cyclen Derivatives. Antibiotics, 2019, 8, 224.	3.7	9
31	Sono-Biosynthesis and Characterization of AuNPs from Danube Delta Nymphaea alba Root Extracts and Their Biological Properties. Nanomaterials, 2021, 11, 1562.	4.1	9
32	A new methodology combining PCR, cloning, and sequencing of clones discriminated by RFLP for the study of microbial populations: application to an UASB reactor sample. Applied Microbiology and Biotechnology, 2010, 85, 801-806.	3.6	8
33	Postgenomic Approaches and Bioinformatics Tools to Advance the Development of Vaccines against Bacteria of the Burkholderia cepacia Complex. Vaccines, 2018, 6, 34.	4.4	8
34	Bacterial Nosocomial Infections: Multidrug Resistance as a Trigger for the Development of Novel Antimicrobials. Antibiotics, 2021, 10, 942.	3.7	8
35	Bioinformatics Applications in Life Sciences and Technologies. BioMed Research International, 2016, 2016, 1-2.	1.9	7
36	Key Parameters on the Antibacterial Activity of Silver Camphor Complexes. Antibiotics, 2021, 10, 135.	3.7	7

#	Article	IF	CITATIONS
37	Burkholderia cepacia Complex Infections Among Cystic Fibrosis Patients: Perspectives and Challenges. , 0, , .		6
38	New insights into the immunoproteome of B. cenocepacia J2315 using serum samples from cystic fibrosis patients. New Biotechnology, 2020, 54, 62-70.	4.4	6
39	Broad Spectrum Functional Activity of Structurally Related Monoanionic Au(III) Bis(Dithiolene) Complexes. International Journal of Molecular Sciences, 2022, 23, 7146.	4.1	5
40	A Polyclonal Antibody Raised against the Burkholderia cenocepacia OmpA-like Protein BCAL2645 Impairs the Bacterium Adhesion and Invasion of Human Epithelial Cells In Vitro. Biomedicines, 2021, 9, 1788.	3.2	4
41	Synthesis and Characterization of Camphorimine Au(I) Complexes with a Remarkably High Antibacterial Activity towards B. contaminans and P. aeruginosa. Antibiotics, 2021, 10, 1272.	3.7	3
42	Bioinformatics: A Molecular Microbiologist's Perspective. Current Bioinformatics, 2014, 9, 8-17.	1.5	2
43	Differential effects of Th17 cytokines during the response of neutrophils to Burkholderia cenocepacia outer membrane protein A. Central-European Journal of Immunology, 2019, 44, 403-413.	1.2	2
44	LipNanoCar Technology – A Versatile and Scalable Technology for the Production of Lipid Nanoparticles. Advances in Experimental Medicine and Biology, 2022, 1357, 43-82.	1.6	2
45	Identification and exploitation of Burkholderia cepacia complex virulence factors as potential antimicrobial targets. , $2011,$, .		0
46	A RNomics-based strategy identifies regulatory small RNAs in Burkholderia cepacia complex. , 2011, , .		0