Melanie J Dobson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2055858/publications.pdf

Version: 2024-02-01

257101 301761 2,924 39 24 39 citations g-index h-index papers 39 39 39 1744 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Use of Yeast Plasmids: Transformation and Inheritance Assays. Methods in Molecular Biology, 2021, 2196, 1-13.	0.4	2
2	Improving wrist imaging through a multicentre educational intervention: The challenge of orthogonal projections. Hand Therapy, 2020, 25, 107-113.	0.5	2
3	Insights into the DNA sequence elements required for partitioning and copy number control of the yeast 2-micron plasmid. Current Genetics, 2019, 65, 887-892.	0.8	4
4	DNA sequence elements required for partitioning competence of the <i>Saccharomyces cerevisiae </i> 2-micron plasmid <i>STB </i> 1-locus. Nucleic Acids Research, 2019, 47, 716-728.	6.5	11
5	The yeast 2-μm plasmid Raf protein contributes to plasmid inheritance by stabilizing the Rep1 and Rep2 partitioning proteins. Nucleic Acids Research, 2017, 45, 10518-10533.	6.5	12
6	Che1/AATF interacts with subunits of the histone acetyltransferase core module of SAGA complexes. PLoS ONE, 2017, 12, e0189193.	1.1	5
7	New partner proteins containing novel internal recognition motif for human glutaminase interacting protein (hGIP). Biochemical and Biophysical Research Communications, 2013, 432, 10-15.	1.0	6
8	Identification of transcriptional and phosphatase regulators as interaction partners of human ADA3, a component of histone acetyltransferase complexes. Biochemical Journal, 2013, 450, 311-320.	1.7	9
9	Deficient Sumoylation of Yeast 2-Micron Plasmid Proteins Rep1 and Rep2 Associated with Their Loss from the Plasmid-Partitioning Locus and Impaired Plasmid Inheritance. PLoS ONE, 2013, 8, e60384.	1.1	18
10	Identification of brain-specific angiogenesis inhibitor 2 as an interaction partner of glutaminase interacting protein. Biochemical and Biophysical Research Communications, 2011, 411, 792-797.	1.0	21
11	Heritable skewed X-chromosome inactivation leads to haemophilia A expression in heterozygous females. European Journal of Human Genetics, 2007, 15, 628-637.	1.4	71
12	The 2μm Plasmid Causes Cell Death in Saccharomyces cerevisiae with a Mutation in Ulp1 Protease. Molecular and Cellular Biology, 2005, 25, 4299-4310.	1.1	39
13	The 2 micron plasmid purloins the yeast cohesin complex. Journal of Cell Biology, 2002, 158, 625-637.	2.3	68
14	Molecular and cytogenetic analysis of the telomeric (TTAGGG) n repetitive sequences in the Nile tilapia, Oreochromis niloticus (Teleostei: Cichlidae). Chromosoma, 2002, 111, 45-52.	1.0	59
15	ETn insertion in the mouse Adcy1 gene: transcriptional and phylogenetic analyses. Mammalian Genome, 2000, 11, 97-103.	1.0	10
16	Partitioning of the 2-νm Circle Plasmid of Saccharomyces cerevisiae. Journal of Cell Biology, 2000, 149, 553-566.	2.3	62
17	A LINE2 repetitive DNA sequence from the cichlid fish, Oreochromis niloticus: sequence analysis and chromosomal distribution. Chromosoma, 1999, 108, 457-468.	1.0	39
18	Mutations in NPC1 Highlight a Conserved NPC1-Specific Cysteine-Rich Domain. American Journal of Human Genetics, 1999, 65, 1252-1260.	2.6	108

#	Article	IF	Citations
19	Loss of adenylyl cyclase I activity disrupts patterning of mouse somatosensory cortex. Nature Genetics, 1998, 19, 289-291.	9.4	156
20	The Nova Scotia (Type D) Form of Niemann-Pick Disease Is Caused by a G3097â†'T Transversion in NPC1. American Journal of Human Genetics, 1998, 63, 52-54.	2.6	110
21	The Telomere-Associated DNA from Human Chromosome 20p Contains a Pseudotelomere Structure and Shares Sequences with the Subtelomeric Regions of 4q and 18p. Genomics, 1997, 46, 51-60.	1.3	17
22	Purification and characterisation of an Aspergillus niger invertase and its DNA sequence. Current Genetics, 1993, 24, 60-66.	0.8	63
23	Regulation of Isopenicillin N Synthetase (IPNS) Gene Expression in Acremonium Chrysogenum. Nature Biotechnology, 1990, 8, 237-240.	9.4	19
24	Expression of the Aspergillus niger glucose oxidase gene in A. niger, A. nidulans and Saccharomyces cerevisiae. Current Genetics, 1990, 18, 531-536.	0.8	50
25	Structure and polymorphism of human telomere-associated DNA. Cell, 1990, 63, 119-132.	13.5	350
26	Transformation of Pseudocercosporella herpotrichoides using two heterologous genes. Current Genetics, 1989, 16, 177-180.	0.8	17
27	A transcriptional activator is located in the coding region of the yeastPGKgene. Nucleic Acids Research, 1987, 15, 6243-6259.	6.5	60
28	A retrovirus-like strategy for expression of a fusion protein encoded by yeast transposon Ty1. Nature, 1985, 313, 243-246.	13.7	202
29	The Ty transposon of Saccharomyces cerevisiae determines the synthesis of at least three proteins. Nucleic Acids Research, 1985, 13, 6249-6263.	6.5	63
30	Variants within the yeast Ty sequence family encode a class of structurally conserved proteins. Nucleic Acids Research, 1985, 13, 4097-4112.	6.5	48
31	Heterologous Gene Expression in <i>Saccharomyces cerevisiae</i> . Biotechnology and Genetic Engineering Reviews, 1985, 3, 377-416.	2.4	88
32	Factors affecting heterologous gene expression in Saccharomyces cerevisiae. Gene, 1985, 33, 215-226.	1.0	123
33	Characterization of human chromosomal DNA sequences which replicate autonomously inSaccharomyces cerevisiae. Nucleic Acids Research, 1984, 12, 1049-1068.	6.5	94
34	Investigation of the activity of yeast phosphoglycerate kinase by site-specific mutagenesis. Biochemical Society Transactions, 1984, 12, 278-279.	1.6	2
35	Efficient synthesis of enzymatically active calf chymosin in Saccharomyces cerevisiae. Gene, 1983, 24, 1-14.	1.0	368
36	Relationship of the [psi] factor with other plasmids of Saccharomyces cerevisiae. Plasmid, 1982, 8, 103-111.	0.4	29

#	Article	IF	CITATIONS
37	Conservation of high efficiency promoter sequences inSaccharomyces cerevisiae. Nucleic Acids Research, 1982, 10, 2625-2637.	6.5	426
38	Control of recombination within and between DNA plasmids of Saccharomyces cerevisiae. Current Genetics, 1980, 2, 193-200.	0.8	25
39	Loss of 2 um DNA from Saccharomyces cerevisiae transformed with the chimaeric plasmid pJDB219. Current Genetics, 1980, 2, 201-205.	0.8	68