Shuhei Noda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/205570/publications.pdf

Version: 2024-02-01

516710 677142 22 705 16 22 h-index citations g-index papers 24 24 24 841 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Metabolic design of a platform Escherichia coli strain producing various chorismate derivatives. Metabolic Engineering, 2016, 33, 119-129.	7.0	101
2	Recent Advances in Microbial Production of Aromatic Chemicals and Derivatives. Trends in Biotechnology, 2017, 35, 785-796.	9.3	92
3	Synergistic effect and application of xylanases as accessory enzymes to enhance the hydrolysis of pretreated bagasse. Enzyme and Microbial Technology, 2015, 72, 16-24.	3.2	88
4	Metabolic engineering of Escherichia coli for shikimate pathway derivative production from glucose–xylose co-substrate. Nature Communications, 2020, 11, 279.	12.8	60
5	Cinnamic acid production using Streptomyces lividans expressing phenylalanine ammonia lyase. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 643-648.	3.0	45
6	Metabolic engineering of <i>E. coli</i> for improving mevalonate production to promote NADPH regeneration and enhance acetylâ€CoA supply. Biotechnology and Bioengineering, 2020, 117, 2153-2164.	3.3	36
7	Engineering a synthetic pathway for maleate in Escherichia coli. Nature Communications, 2017, 8, 1153.	12.8	35
8	Over-production of various secretory-form proteins in Streptomyces lividans. Protein Expression and Purification, 2010, 73, 198-202.	1.3	33
9	Effect of pretreatment methods on the synergism of cellulase and xylanase during the hydrolysis of bagasse. Bioresource Technology, 2015, 185, 158-164.	9.6	31
10	Benzoic acid fermentation from starch and cellulose via a plant-like \hat{l}^2 -oxidation pathway in Streptomyces maritimus. Microbial Cell Factories, 2012, 11, 49.	4.0	28
11	Direct 1,3-butadiene biosynthesis in Escherichia coli via a tailored ferulic acid decarboxylase mutant. Nature Communications, 2021, 12, 2195.	12.8	28
12	Production of Streptoverticillium cinnamoneum transglutaminase and cinnamic acid by recombinant Streptomyces lividans cultured on biomass-derived carbon sources. Bioresource Technology, 2012, 104, 648-651.	9.6	26
13	Reconstruction of metabolic pathway for isobutanol production in Escherichia coli. Microbial Cell Factories, 2019, 18, 124.	4.0	24
14	Synergistic degradation of arabinoxylan by free and immobilized xylanases and arabinofuranosidase. Biochemical Engineering Journal, 2016, 114, 268-275.	3.6	22
15	4-Vinylphenol biosynthesis from cellulose as the sole carbon source using phenolic acid decarboxylase- and tyrosine ammonia lyase-expressing Streptomyces lividans. Bioresource Technology, 2015, 180, 59-65.	9.6	17
16	Muconic Acid Production Using Gene-Level Fusion Proteins in <i>Escherichia coli</i> ACS Synthetic Biology, 2018, 7, 2698-2705.	3.8	17
17	Reprogramming Escherichia coli pyruvate-forming reaction towards chorismate derivatives production. Metabolic Engineering, 2021, 67, 1-10.	7.0	5
18	Evaluation of Brachypodium distachyon L-Tyrosine Decarboxylase Using L-Tyrosine Over-Producing Saccharomyces cerevisiae. PLoS ONE, 2015, 10, e0125488.	2.5	4

Shuhei Noda

#	Article	IF	CITATION
19	Secretory production of tetrameric native full-length streptavidin with thermostability using Streptomyces lividans as a host. Microbial Cell Factories, 2015, 14, 5.	4.0	4
20	G6P-capturing molecules in the periplasm of Escherichia coli accelerate the shikimate pathway. Metabolic Engineering, 2022, 72, 68-81.	7.0	3
21	Creation of endoglucanase-secreting Streptomyces lividans for enzyme production using cellulose as the carbon source. Applied Microbiology and Biotechnology, 2013, 97, 5711-5720.	3.6	2
22	Aromatic chemicals production using phenylalnine ammonia lyase expressing Streptomyces lividans. , $2011, \dots$		0