
Jeffrey R Whiteaker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/20557/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Internal Standard Triggered-Parallel Reaction Monitoring Mass Spectrometry Enables Multiplexed Quantification of Candidate Biomarkers in Plasma. Analytical Chemistry, 2022, 94, 9540-9547.	6.5	11
2	Loss of TGFβ signaling increases alternative end-joining DNA repair that sensitizes to genotoxic therapies across cancer types. Science Translational Medicine, 2021, 13, .	12.4	33
3	Targeted mass-spectrometry-based assays enable multiplex quantification of receptor tyrosine kinase, MAP kinase, and AKT signaling. Cell Reports Methods, 2021, 1, 100015.	2.9	10
4	Targeted Mass Spectrometry Enables Quantification of Novel Pharmacodynamic Biomarkers of ATM Kinase Inhibition. Cancers, 2021, 13, 3843.	3.7	7
5	Comparative analysis of TCR and CAR signaling informs CAR designs with superior antigen sensitivity and in vivo function. Science Signaling, 2021, 14, .	3.6	67
6	Targeted Mass Spectrometry Enables Multiplexed Quantification of Immunomodulatory Proteins in Clinical Biospecimens. Frontiers in Immunology, 2021, 12, 765898.	4.8	13
7	Multiomic analysis identifies CPT1A as a potential therapeutic target in platinum-refractory, high-grade serous ovarian cancer. Cell Reports Medicine, 2021, 2, 100471.	6.5	26
8	A dataset describing a suite of novel antibody reagents for the RAS signaling network. Scientific Data, 2019, 6, 160.	5.3	4
9	Clinical potential of mass spectrometry-based proteogenomics. Nature Reviews Clinical Oncology, 2019, 16, 256-268.	27.6	149
10	A Multiplexed Mass Spectrometry-Based Assay for Robust Quantification of Phosphosignaling in Response to DNA Damage. Radiation Research, 2018, 189, 505.	1.5	25
11	Targeted mass spectrometry enables robust quantification of FANCD2 mono-ubiquitination in response to DNA damage. DNA Repair, 2018, 65, 47-53.	2.8	18
12	pRAD50: a novel and clinically applicable pharmacodynamic biomarker of both ATM and ATR inhibition identified using mass spectrometry and immunohistochemistry. British Journal of Cancer, 2018, 119, 1233-1243.	6.4	27
13	Phosphoproteomic analysis of chimeric antigen receptor signaling reveals kinetic and quantitative differences that affect cell function. Science Signaling, 2018, 11, .	3.6	323
14	Peptide Immunoaffinity Enrichment with Targeted Mass Spectrometry: Application to Quantification of ATM Kinase Phospho-Signaling. Methods in Molecular Biology, 2017, 1599, 197-213.	0.9	15
15	Quantification of ATP7B Protein in Dried Blood Spots by Peptide Immuno-SRM as a Potential Screen for Wilson's Disease. Journal of Proteome Research, 2017, 16, 862-871.	3.7	49
16	Commercially available antibodies can be applied in quantitative multiplexed peptide immunoaffinity enrichment targeted mass spectrometry assays. Proteomics, 2016, 16, 2141-2145.	2.2	17
17	Optimized Protocol for Quantitative Multiple Reaction Monitoring-Based Proteomic Analysis of Formalin-Fixed, Paraffin-Embedded Tissues. Journal of Proteome Research, 2016, 15, 2717-2728.	3.7	42
18	Integrated Proteogenomic Characterization of Human High-Grade Serous Ovarian Cancer. Cell, 2016, 166, 755-765.	28.9	804

JEFFREY R WHITEAKER

#	Article	IF	CITATIONS
19	Recommendations for the Generation, Quantification, Storage, and Handling of Peptides Used for Mass Spectrometry–Based Assays. Clinical Chemistry, 2016, 62, 48-69.	3.2	187
20	Immobilized Metal Affinity Chromatography Coupled to Multiple Reaction Monitoring Enables Reproducible Quantification of Phospho-signaling. Molecular and Cellular Proteomics, 2016, 15, 726-739.	3.8	46
21	Using the CPTAC Assay Portal to Identify and Implement Highly Characterized Targeted Proteomics Assays. Methods in Molecular Biology, 2016, 1410, 223-236.	0.9	33
22	Peptide Immunoaffinity Enrichment and Targeted Mass Spectrometry Enables Multiplex, Quantitative Pharmacodynamic Studies of Phospho-Signaling. Molecular and Cellular Proteomics, 2015, 14, 2261-2273.	3.8	56
23	CPTAC Assay Portal: a repository of targeted proteomic assays. Nature Methods, 2014, 11, 703-704.	19.0	150
24	Demonstrating the feasibility of large-scale development of standardized assays to quantify human proteins. Nature Methods, 2014, 11, 149-155.	19.0	178
25	Panorama: A Targeted Proteomics Knowledge Base. Journal of Proteome Research, 2014, 13, 4205-4210.	3.7	205
26	High-Affinity Recombinant Antibody Fragments (Fabs) Can Be Applied in Peptide Enrichment Immuno-MRM Assays. Journal of Proteome Research, 2014, 13, 2187-2196.	3.7	42
27	Sequential Multiplexed Analyte Quantification Using Peptide Immunoaffinity Enrichment Coupled to Mass Spectrometry. Molecular and Cellular Proteomics, 2012, 11, M111.015347.	3.8	66
28	Multiplexed quantification of estrogen receptor and <scp>HER</scp> 2/ <scp>N</scp> eu in tissue and cell lysates by peptide immunoaffinity enrichment mass spectrometry. Proteomics, 2012, 12, 1253-1260.	2.2	45
29	Interlaboratory Evaluation of Automated, Multiplexed Peptide Immunoaffinity Enrichment Coupled to Multiple Reaction Monitoring Mass Spectrometry for Quantifying Proteins in Plasma. Molecular and Cellular Proteomics, 2012, 11, M111.013854.	3.8	176
30	A targeted proteomics–based pipeline for verification of biomarkers in plasma. Nature Biotechnology, 2011, 29, 625-634.	17.5	336
31	Peptide Immunoaffinity Enrichment Coupled with Mass Spectrometry for Peptide and Protein Quantification. Clinics in Laboratory Medicine, 2011, 31, 385-396.	1.4	42
32	Quantification of Proteins Using Peptide Immunoaffinity Enrichment Coupled with Mass Spectrometry. Journal of Visualized Experiments, 2011, , .	0.3	22
33	Evaluation of Large Scale Quantitative Proteomic Assay Development Using Peptide Affinity-based Mass Spectrometry. Molecular and Cellular Proteomics, 2011, 10, M110.005645.	3.8	130
34	Automated screening of monoclonal antibodies for SISCAPA assays using a magnetic bead processor and liquid chromatography-selected reaction monitoring-mass spectrometry. Journal of Immunological Methods, 2010, 353, 49-61.	1.4	55
35	An Automated and Multiplexed Method for High Throughput Peptide Immunoaffinity Enrichment and Multiple Reaction Monitoring Mass Spectrometry-based Quantification of Protein Biomarkers. Molecular and Cellular Proteomics, 2010, 9, 184-196.	3.8	308
36	Effect of Collision Energy Optimization on the Measurement of Peptides by Selected Reaction Monitoring (SRM) Mass Spectrometry. Analytical Chemistry, 2010, 82, 10116-10124.	6.5	220

#	Article	IF	CITATIONS
37	The evolving role of mass spectrometry in cancer biomarker discovery. Cancer Biology and Therapy, 2009, 8, 1083-1094.	3.4	66
38	Multi-site assessment of the precision and reproducibility of multiple reaction monitoring–based measurements of proteins in plasma. Nature Biotechnology, 2009, 27, 633-641.	17.5	958
39	Integrated Pipeline for Mass Spectrometry-Based Discovery and Confirmation of Biomarkers Demonstrated in a Mouse Model of Breast Cancer. Journal of Proteome Research, 2007, 6, 3962-3975.	3.7	171
40	Antibody-based enrichment of peptides on magnetic beads for mass-spectrometry-based quantification of serum biomarkers. Analytical Biochemistry, 2007, 362, 44-54.	2.4	259
41	Normalization regarding non-random missing values in high-throughput mass spectrometry data. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2006, , 315-26.	0.7	45