Yang Zou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2055530/publications.pdf

Version: 2024-02-01

46 2,669 24 46 papers citations h-index g-index

47 47 47 2042 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Precisely Controlling the Position of Bromine on the End Group Enables Wellâ€Regular Polymer Acceptors for Allâ€Polymer Solar Cells with Efficiencies over 15%. Advanced Materials, 2020, 32, e2005942.	21.0	282
2	Quenchingâ€Resistant Multiresonance TADF Emitter Realizes 40% External Quantum Efficiency in Narrowband Electroluminescence at High Doping Level. Advanced Materials, 2022, 34, e2106954.	21.0	235
3	Design Strategy for Solutionâ€Processable Thermally Activated Delayed Fluorescence Emitters and Their Applications in Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2018, 6, 1800568.	7.3	199
4	Peripheral Decoration of Multiâ€Resonance Molecules as a Versatile Approach for Simultaneous Longâ€Wavelength and Narrowband Emission. Advanced Functional Materials, 2021, 31, 2102017.	14.9	157
5	Reduced Energy Loss Enabled by a Chlorinated Thiopheneâ€Fused Endingâ€Group Small Molecular Acceptor for Efficient Nonfullerene Organic Solar Cells with 13.6% Efficiency. Advanced Energy Materials, 2019, 9, 1900041.	19.5	144
6	Highâ∈Performance Narrowband Pureâ∈Red OLEDs with External Quantum Efficiencies up to 36.1% and Ultralow Efficiency Rollâ€Off. Advanced Materials, 2022, 34, e2201442.	21.0	131
7	Altering alkyl-chains branching positions for boosting the performance of small-molecule acceptors for highly efficient nonfullerene organic solar cells. Science China Chemistry, 2020, 63, 361-369.	8.2	128
8	Organic emitter integrating aggregation-induced delayed fluorescence and room-temperature phosphorescence characteristics, and its application in time-resolved luminescence imaging. Chemical Science, 2018, 9, 6150-6155.	7.4	111
9	Extending the π‧keleton of Multiâ€Resonance TADF Materials towards Highâ€Efficiency Narrowband Deepâ€Blue Emission. Angewandte Chemie - International Edition, 2022, 61, .	13.8	110
10	Altering the Positions of Chlorine and Bromine Substitution on the End Group Enables Highâ€Performance Acceptor and Efficient Organic Solar Cells. Advanced Energy Materials, 2020, 10, 2002649.	19.5	103
11	Side Group Engineering of Small Molecular Acceptors for Highâ€Performance Fullereneâ€Free Polymer Solar Cells: Thiophene Being Superior to Selenophene. Advanced Functional Materials, 2017, 27, 1702194.	14.9	88
12	Simple Acridanâ€Based Multiâ€Resonance Structures Enable Highly Efficient Narrowband Green TADF Electroluminescence. Advanced Optical Materials, 2021, 9, 2100825.	7.3	79
13	Using Ring-Opening Metathesis Polymerization of Norbornene To Construct Thermally Activated Delayed Fluorescence Polymers: High-Efficiency Blue Polymer Light-Emitting Diodes. Macromolecules, 2018, 51, 1598-1604.	4.8	76
14	Designing an asymmetrical isomer to promote the LUMO energy level and molecular packing of a non-fullerene acceptor for polymer solar cells with 12.6% efficiency. Chemical Science, 2018, 9, 8142-8149.	7.4	67
15	Heteroheptacene-based acceptors with thieno[3 <i>,</i> 2- <i>b</i>]pyrrole yield high-performance polymer solar cells. National Science Review, 2022, 9, .	9.5	67
16	Isomerization Strategy of Nonfullerene Smallâ€Molecule Acceptors for Organic Solar Cells. Advanced Functional Materials, 2020, 30, 2004477.	14.9	58
17	Synthesis and Solution Processing of a Hydrogen-Bonded Ladder Polymer. CheM, 2017, 2, 139-152.	11.7	50
18	Conformationâ€Tuning Effect of Asymmetric Small Molecule Acceptors on Molecular Packing, Interaction, and Photovoltaic Performance. Small, 2020, 16, e2001942.	10.0	49

#	Article	IF	CITATIONS
19	Extraordinary electrochemical stability and extended polaron delocalization of ladder-type polyaniline-analogous polymers. Chemical Science, 2020, 11, 12737-12745.	7.4	38
20	Highâ€Performance Circularly Polarized Electroluminescence with Simultaneous Narrowband Emission, High Efficiency, and Large Dissymmetry Factor. Advanced Materials, 2022, 34, e2109147.	21.0	37
21	Simultaneously High Upconversion Efficiency and Large Antiâ€Stokes Shift by Using Os(II) Complex Dyad as Triplet Photosensitizer. Advanced Optical Materials, 2020, 8, 1902157.	7.3	36
22	A red thermally activated delayed fluorescence material as a triplet sensitizer for triplet–triplet annihilation up-conversion with high efficiency and low energy loss. Journal of Materials Chemistry C, 2017, 5, 12674-12677.	5.5	34
23	Molecular Engineering Enables TADF Emitters Well Suitable for Nonâ€Doped OLEDs with External Quantum Efficiency of Nearly 30%. Advanced Functional Materials, 2022, 32, .	14.9	32
24	Energy level-modulated non-fullerene small molecule acceptors for improved $\langle i \rangle V \langle i \rangle \langle sub \rangle OC \langle sub \rangle$ and efficiency of inverted perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 3336-3343.	10.3	29
25	Copper(I) Complex as Sensitizer Enables Highâ€Performance Organic Lightâ€Emitting Diodes with Very Low Efficiency Rollâ€Off. Advanced Functional Materials, 2021, 31, 2106345.	14.9	25
26	Extending the Ï€â€Skeleton of Multiâ€Resonance TADF Materials towards Highâ€Efficiency Narrowband Deepâ€Blue Emission. Angewandte Chemie, 2022, 134, .	2.0	25
27	Designing dual emitting cores for highly efficient thermally activated delayed fluorescent emitters. Journal of Materials Chemistry C, 2018, 6, 11615-11621.	5.5	24
28	Benzoylpyridine-based TADF emitters with AIE feature for efficient non-doped OLEDs by both evaporation and solution process. Dyes and Pigments, 2020, 176, 108179.	3.7	23
29	Pauli Paramagnetism of Stable Analogues of Pernigraniline Salt Featuring Ladder-Type Constitution. Journal of the American Chemical Society, 2020, 142, 641-648.	13.7	23
30	Novel Nitrogen-Containing Heterocyclic Non-Fullerene Acceptors for Organic PhotovoltaicCells: Different End-Capping Groups Leading to a Big Difference of Power Conversion Efficiencies. ACS Applied Materials & Differences, 2020, 12, 13068-13076.	8.0	21
31	Efficient non-doped fluorescent OLEDs with nearly 6% external quantum efficiency and deep-blue emission approaching the blue standard enabled by quaterphenyl-based emitters. Journal of Materials Chemistry C, 2018, 6, 4479-4484.	5.5	20
32	Multi-resonance organoboron-based fluorescent probe for ultra-sensitive, selective and reversible detection of fluoride ions. Journal of Materials Chemistry C, 2021, 9, 1567-1571.	5.5	19
33	Fused twin-acridine scaffolds as electron donors for thermally activated delayed fluorescence emitters: controllable TADF behavior by methyl substitution. Chemical Communications, 2019, 55, 15125-15128.	4.1	16
34	Pyrido[2,3- <i>b</i>)pyrazine-based full-color fluoresent materials for high-performance OLEDs. Journal of Materials Chemistry C, 2020, 8, 12445-12449.	5.5	16
35	3D Triptyceneâ€Fused Acridine Electron Donor Enables Highâ€Efficiency Nondoped Thermally Activated Delayed Fluorescent OLEDs. Advanced Optical Materials, 2021, 9, 2100273.	7. 3	16
36	A Pyrroleâ€Fused Asymmetrical Electron Acceptor for Polymer Solar Cells with Approaching 16% Efficiency. Small Structures, 2021, 2, 2000052.	12.0	14

#	Article	IF	CITATION
37	Star-shaped thermally activated delayed fluorescence emitters with a tri-armed arylsulfonic acceptor for efficient solution processed organic light emitting diodes. Journal of Materials Chemistry C, 2020, 8, 5580-5586.	5.5	13
38	Triarylboron-cored multi-donors TADF emitter with high horizontal dipole orientation ratio achieving high performance OLEDs with near 39% external quantum efficiency and small efficiency Roll-off. Chemical Engineering Journal, 2022, 450, 137805.	12.7	13
39	Realize efficient organic afterglow from simple halogenated acridan derivatives. Chemical Engineering Journal, 2021, 419, 129598.	12.7	12
40	A simple and effective strategy to lock the quasi-equatorial conformation of acridine by H–H repulsion for highly efficient thermally activated delayed fluorescence emitters. Chemical Communications, 2020, 56, 2308-2311.	4.1	11
41	Scalable Synthesis and Multiâ€Electron Transfer of Aniline/Fluorene Copolymer for Solutionâ€Processable Battery Cathodes. Macromolecular Rapid Communications, 2017, 38, 1700067.	3.9	9
42	Color-tunable tetracoordinated organoboron complexes exhibiting aggregation-induced emission for the efficient turn-on detection of fluoride ions. Materials Chemistry Frontiers, 2021, 5, 2353-2360.	5.9	9
43	Synthesis of Spirobifluoreneâ€∢i>alt∢/i>â€Carbazole Copolymers with Oxadiazole Pendants and their Thermal, Electrochemical, and Photoluminescent Properties. Macromolecular Rapid Communications, 2008, 29, 1817-1822.	3.9	7
44	The role of epigenetic modifications in the osteogenic differentiation of adipose-derived stem cells. Connective Tissue Research, 2019, 60, 507-520.	2.3	6
45	Phenoxazine-Dibenzothiophene Sulfoximine Emitters Featuring Both Thermally Activated Delayed Fluorescence and Aggregation Induced Emission. Molecules, 2021, 26, 5243.	3.8	4
46	Novel tetracoordinated organoboron emitters for thermally activated delayed fluorescence organic light-emitting diodes. Dyes and Pigments, 2021, 188, 109192.	3.7	3