Aldo Ferrari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/205535/publications.pdf

Version: 2024-02-01

53 2,487 26 48 papers citations h-index g-index

58 58 58 58 3965

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Nanoengineering for Mechanobiology "N4M-20― European Biophysics Journal, 2022, 51, 97-98.	2.2	2
2	Bistability of Dielectrically Anisotropic Nematic Crystals and the Adaptation of Endothelial Collectives to Stress Fields. Advanced Science, 2022, , 2102148.	11.2	3
3	Evaluation of Chemo―and Photoâ€ŧoxicity of a Live Fluorescent Dye for Cell Analysis. Photochemistry and Photobiology, 2021, 97, 448-452.	2.5	0
4	A Novel Hybrid Membrane VAD as First Step Toward Hemocompatible Blood Propulsion. Annals of Biomedical Engineering, 2021, 49, 716-731.	2.5	9
5	Mechanical Fingerprint of Senescence in Endothelial Cells. Nano Letters, 2021, 21, 4911-4920.	9.1	27
6	A free-form patterning method enabling endothelialization under dynamic flow. Biomaterials, 2021, 273, 120816.	11.4	12
7	Systems of conductive skin for power transfer in clinical applications. European Biophysics Journal, 2021, , 1.	2.2	3
8	Assessing effectiveness of Komagataeibacter strains for producing surface-microstructured cellulose via guided assembly-based biolithography. Scientific Reports, 2021, 11, 19311.	3.3	8
9	Microengineered biosynthesized cellulose as anti-fibrotic in vivo protection for cardiac implantable electronic devices. Biomaterials, 2020, 229, 119583.	11.4	45
10	The Role of Tricellulin in Epithelial Jamming and Unjamming via Segmentation of Tricellular Junctions. Advanced Science, 2020, 7, 2001213.	11.2	5
11	Role of the nuclear membrane protein Emerin in front-rear polarity of the nucleus. Nature Communications, 2020, 11, 2122.	12.8	20
12	Antibacterial, Cytocompatible, Sustainably Sourced: Cellulose Membranes with Bifunctional Peptides for Advanced Wound Dressings. Advanced Healthcare Materials, 2020, 9, e1901850.	7.6	49
13	Lipoconstruct surface topography grating size influences vascularization onset in the dorsal skinfold chamber model. Acta Biomaterialia, 2020, 106, 136-144.	8.3	2
14	Recent technological advancements in traction force microscopy. Biophysical Reviews, 2019, 11, 679-681.	3.2	15
15	Cellogram: On-the-Fly Traction Force Microscopy. Nano Letters, 2019, 19, 6742-6750.	9.1	20
16	Science by the sea: how nanoengineering met mechanobiology in Camogli. Biophysical Reviews, 2019, 11, 659-661.	3.2	5
17	Optimized Topological and Topographical Expansion of Epithelia. ACS Biomaterials Science and Engineering, 2019, 5, 3922-3934.	5.2	8
18	Force and Collective Epithelial Activities. Advances in Experimental Medicine and Biology, 2019, 1146, 31-44.	1.6	1

#	Article	IF	Citations
19	Pore Shape Defines Paths of Metastatic Cell Migration. Nano Letters, 2018, 18, 2140-2147.	9.1	16
20	A RAB35-p85/PI3K axis controls oscillatory apical protrusions required for efficient chemotactic migration. Nature Communications, 2018, 9, 1475.	12.8	23
21	A micron-scale surface topography design reducing cell adhesion to implanted materials. Scientific Reports, 2018, 8, 10887.	3.3	85
22	Cell cycle–dependent force transmission in cancer cells. Molecular Biology of the Cell, 2018, 29, 2528-2539.	2.1	27
23	Adaptive reorientation of endothelial collectives in response to strain. Integrative Biology (United) Tj ETQq1 1 0.3	784314 rg 1.3	:BT ₈ /Overlock
24	Honeycomb-structured metasurfaces for the adaptive nesting of endothelial cells under hemodynamic loads. Biomaterials Science, 2018, 6, 2726-2737.	5.4	10
25	Endocytic reawakening of motility in jammed epithelia. Nature Materials, 2017, 16, 587-596.	27.5	207
26	Facile endothelium protection from TNF- \hat{l}_{\pm} inflammatory insult with surface topography. Biomaterials, 2017, 138, 131-141.	11.4	17
27	A <i>Tph2</i> ^{<i>GFP</i>} Reporter Stem Cell Line To Model <i>in Vitro</i> and <i>in Vivo</i> Serotonergic Neuron Development and Function. ACS Chemical Neuroscience, 2017, 8, 1043-1052.	3.5	8
28	Ultrasound-mediated piezoelectric differentiation of neuron-like PC12 cells on PVDF membranes. Scientific Reports, 2017, 7, 4028.	3.3	131
29	Left Ventricular Assist Devices: Challenges Toward Sustaining Long-Term Patient Care. Annals of Biomedical Engineering, 2017, 45, 1836-1851.	2.5	42
30	A Novel Bioreactor System for the Assessment of Endothelialization on Deformable Surfaces. Scientific Reports, 2016, 6, 38861.	3.3	21
31	Endothelialization of Rationally Microtextured Surfaces with Minimal Cell Seeding Under Flow. Small, 2016, 12, 4113-4126.	10.0	15
32	Confocal reference free traction force microscopy. Nature Communications, 2016, 7, 12814.	12.8	109
33	Toward Contactless Biology: Acoustophoretic DNA Transfection. Scientific Reports, 2016, 6, 20023.	3.3	58
34	A Nanoprinted Model of Interstitial Cancer Migration Reveals a Link between Cell Deformability and Proliferation. ACS Nano, 2016, 10, 6437-6448.	14.6	34
35	Surface-Structured Bacterial Cellulose with Guided Assembly-Based Biolithography (GAB). ACS Nano, 2015, 9, 206-219.	14.6	110
36	Toward a Rational Design of Surface Textures Promoting Endothelialization. Nano Letters, 2014, 14, 1069-1079.	9.1	61

#	Article	IF	Citations
37	The influence of surface micro-structure on endothelialization under supraphysiological wall shear stress. Biomaterials, 2014, 35, 8479-8486.	11.4	40
38	A Novel 3 <scp>D</scp> Integrated Platform for the Highâ€ <scp>R</scp> esolution Study of Cell Migration Plasticity. Macromolecular Bioscience, 2013, 13, 973-983.	4.1	25
39	On cell separation with topographically engineered surfaces. Biointerphases, 2013, 8, 34.	1.6	8
40	A Robust Algorithm for Segmenting and Tracking Clustered Cells in Time-Lapse Fluorescent Microscopy. IEEE Journal of Biomedical and Health Informatics, 2013, 17, 862-869.	6.3	18
41	Accelerated endothelial wound healing on microstructured substrates under flow. Biomaterials, 2013, 34, 1488-1497.	11.4	71
42	Compound Ex Vivo and In Silico Method for Hemodynamic Analysis of Stented Arteries. PLoS ONE, 2013, 8, e58147.	2.5	27
43	Topography-mediated apical guidance in epidermal wound healing. Soft Matter, 2012, 8, 6922.	2.7	30
44	Cell Image Velocimetry (CIV): boosting the automated quantification of cell migration in wound healing assays. Integrative Biology (United Kingdom), 2012, 4, 1437-1447.	1.3	38
45	Phosphorylation of VE-cadherin is modulated by haemodynamic forces and contributes to the regulation of vascular permeability in vivo. Nature Communications, 2012, 3, 1208.	12.8	387
46	Optically Stable Biocompatible Flame-Made SiO ₂ -Coated Y ₂ O ₃ :Tb ³⁺ Nanophosphors for Cell Imaging. ACS Nano, 2012, 6, 3888-3897.	14.6	71
47	Control of initial endothelial spreading by topographic activation of focal adhesion kinase. Soft Matter, 2011, 7, 7313.	2.7	85
48	Nanotopographic Control of Neuronal Polarity. Nano Letters, 2011, 11, 505-511.	9.1	125
49	The effect of alternative neuronal differentiation pathways on PC12 cell adhesion and neurite alignment to nanogratings. Biomaterials, 2010, 31, 2565-2573.	11.4	64
50	Neuronal polarity selection by topography-induced focal adhesion control. Biomaterials, 2010, 31, 4682-4694.	11.4	107
51	Directional PC12 Cell Migration Along Plastic Nanotracks. IEEE Transactions on Biomedical Engineering, 2009, 56, 2692-2696.	4.2	29
52	ROCK-mediated contractility, tight junctions and channels contribute to the conversion of a preapical patch into apical surface during isochoric lumen initiation. Journal of Cell Science, 2008, 121, 3649-3663.	2.0	105
53	Three-Dimensional Modeling of Mechanical Forces in the Extracellular Matrix during Epithelial Lumen Formation. Biophysical Journal, 2006, 90, 4380-4391.	0.5	32