List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2055209/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Analysis and numerical simulation of cross reaction–diffusion systems with the Caputo–Fabrizio and<br>Riesz operators. Numerical Methods for Partial Differential Equations, 2023, 39, 1915-1937.   | 3.6 | 4         |
| 2  | Numerical analysis of polio model: A mathematical approach to epidemiological model using derivative with Mittag–Leffler Kernel. Mathematical Methods in the Applied Sciences, 2023, 46, 8175-8192. | 2.3 | 11        |
| 3  | Fractal Fractional Derivative Operator Method on MCF-7 Cell Line Dynamics. Studies in Systems, Decision and Control, 2022, , 319-339.                                                               | 1.0 | 3         |
| 4  | Modelling and numerical synchronization of chaotic system with fractional-order operator.<br>International Journal of Nonlinear Sciences and Numerical Simulation, 2022, 23, 1269-1287.             | 1.0 | 3         |
| 5  | Spatiotemporal chaos in diffusive systems with the Riesz fractional order operator. Chinese Journal of Physics, 2022, 77, 2258-2275.                                                                | 3.9 | 2         |
| 6  | Modelling the transmission dynamics of Lassa fever with nonlinear incidence rate and vertical transmission. Physica A: Statistical Mechanics and Its Applications, 2022, 597, 127259.               | 2.6 | 26        |
| 7  | Numerical simulation of chaotic maps with the new generalized Caputo-type fractional-order operator. Results in Physics, 2022, 38, 105563.                                                          | 4.1 | 9         |
| 8  | Dynamics of Fractional Chaotic Systems with Chebyshev Spectral Approximation Method.<br>International Journal of Applied and Computational Mathematics, 2022, 8, .                                  | 1.6 | 5         |
| 9  | Spatiotemporal (target) patterns in sub-diffusive predator-prey system with the Caputo operator.<br>Chaos, Solitons and Fractals, 2022, 160, 112267.                                                | 5.1 | 22        |
| 10 | Efficient numerical techniques for computing the Riesz fractional-order reaction-diffusion models arising in biology. Chaos, Solitons and Fractals, 2022, 161, 112394.                              | 5.1 | 27        |
| 11 | Numerical approach to chaotic pattern formation in diffusive predator–prey system with Caputo fractional operator. Numerical Methods for Partial Differential Equations, 2021, 37, 131-151.         | 3.6 | 25        |
| 12 | Pattern formation in superdiffusion predator–preyâ€like problems with integer―and nonintegerâ€order<br>derivatives. Mathematical Methods in the Applied Sciences, 2021, 44, 4018-4036.              | 2.3 | 19        |
| 13 | Computational dynamics of predator-prey model with the power-law kernel. Results in Physics, 2021, 21, 103810.                                                                                      | 4.1 | 7         |
| 14 | Emergent patterns in diffusive Turing-like systems with fractional-order operator. Neural Computing and Applications, 2021, 33, 12703-12720.                                                        | 5.6 | 24        |
| 15 | Computational analysis of different Pseudoplatystoma species patterns the Caputo-Fabrizio derivative.<br>Chaos, Solitons and Fractals, 2021, 144, 110675.                                           | 5.1 | 13        |
| 16 | Analysis and simulation of herd behaviour dynamics based on derivative with nonlocal and nonsingular kernel. Results in Physics, 2021, 22, 103941.                                                  | 4.1 | 11        |
| 17 | Fractal Fractional Operator Method on HER2+ Breast Cancer Dynamics. International Journal of Applied and Computational Mathematics, 2021, 7, 1.                                                     | 1.6 | 21        |
| 18 | Dynamics of pattern formation process in fractional-order super-diffusive processes: a computational approach. Soft Computing, 2021, 25, 11191-11208.                                               | 3.6 | 12        |

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Robust synchronization of chaotic fractional-order systems with shifted Chebyshev spectral collocation method. Journal of Applied Analysis, 2021, 27, 269-282.                                                | 0.5 | 3         |
| 20 | Modeling the Transmission Dynamics of COVID-19 Pandemic in Caputo Type Fractional Derivative.<br>Journal of Multiscale Modeling, 2021, 12, .                                                                  | 1.1 | 39        |
| 21 | Fractional Adams-Bashforth scheme with the Liouville-Caputo derivative and application to chaotic systems. Discrete and Continuous Dynamical Systems - Series S, 2021, 14, 2455.                              | 1.1 | 8         |
| 22 | Analysis and pattern formation scenarios in the superdiffusive system of predation described with Caputo operator. Chaos, Solitons and Fractals, 2021, 152, 111468.                                           | 5.1 | 17        |
| 23 | Numerical simulation of fractional-order reaction–diffusion equations with the Riesz and Caputo derivatives. Neural Computing and Applications, 2020, 32, 4093-4104.                                          | 5.6 | 33        |
| 24 | Modeling the mechanics of viral kinetics under immune control during primary infection of HIV-1 with treatment in fractional order. Physica A: Statistical Mechanics and Its Applications, 2020, 545, 123816. | 2.6 | 92        |
| 25 | Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells. Chaos, Solitons and Fractals, 2020, 140, 110272.                                                                      | 5.1 | 132       |
| 26 | Chaotic and spatiotemporal oscillations in fractional reaction-diffusion system. Chaos, Solitons and Fractals, 2020, 141, 110302.                                                                             | 5.1 | 25        |
| 27 | Dynamics of multi-pulse splitting process in one-dimensional Gray-Scott system with fractional order operator. Chaos, Solitons and Fractals, 2020, 136, 109835.                                               | 5.1 | 19        |
| 28 | Computational techniques for highly oscillatory and chaotic wave problems with fractional-order operator. European Physical Journal Plus, 2020, 135, 1.                                                       | 2.6 | 14        |
| 29 | Modelling of Chaotic Processes with Caputo Fractional Order Derivative. Entropy, 2020, 22, 1027.                                                                                                              | 2.2 | 17        |
| 30 | A nonlinear epidemiological model considering asymptotic and quarantine classes for SARS CoV-2 virus. Chaos, Solitons and Fractals, 2020, 138, 109953.                                                        | 5.1 | 70        |
| 31 | Global dynamics of a fractional order model for the transmission of HIV epidemic with optimal control. Chaos, Solitons and Fractals, 2020, 138, 109826.                                                       | 5.1 | 132       |
| 32 | High-dimensional spatial patterns in fractional reaction-diffusion system arising in biology. Chaos,<br>Solitons and Fractals, 2020, 134, 109723.                                                             | 5.1 | 48        |
| 33 | Mathematical modelling of multi-mutation and drug resistance model with fractional derivative. AEJ -<br>Alexandria Engineering Journal, 2020, 59, 2291-2304.                                                  | 6.4 | 13        |
| 34 | Analysis of fractal fractional differential equations. AEJ - Alexandria Engineering Journal, 2020, 59,<br>1117-1134.                                                                                          | 6.4 | 166       |
| 35 | Fractional operator method on a multi-mutation and intrinsic resistance model. AEJ - Alexandria<br>Engineering Journal, 2020, 59, 1999-2013.                                                                  | 6.4 | 20        |
| 36 | Modelling and analysis of fractal-fractional partial differential equations: Application to reaction-diffusion model. AEJ - Alexandria Engineering Journal, 2020, 59, 2477-2490.                              | 6.4 | 139       |

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Mathematical Modelling and Analysis of Fractional Epidemic Models Using Derivative with<br>Exponential Kernel. , 2020, , 109-128.                                                                                                   |     | 4         |
| 38 | Dynamical behaviour of fractional-order predator-prey system of Holling-type. Discrete and<br>Continuous Dynamical Systems - Series S, 2020, 13, 823-834.                                                                           | 1.1 | 8         |
| 39 | Numerical simulation of multidimensional nonlinear fractional Ginzburg-Landau equations. Discrete and Continuous Dynamical Systems - Series S, 2020, 13, 835-851.                                                                   | 1.1 | 4         |
| 40 | Numerical Simulation of Nonlinear Ecological Models with Nonlocal andÂNonsingular Fractional<br>Derivative. Forum for Interdisciplinary Mathematics, 2020, , 303-320.                                                               | 1.6 | 0         |
| 41 | Modelling and Analysis of Predation System with Nonlocal and Nonsingular Operator. Forum for Interdisciplinary Mathematics, 2020, , 261-282.                                                                                        | 1.6 | 1         |
| 42 | Computational study of multi-species fractional reaction-diffusion system with ABC operator. Chaos,<br>Solitons and Fractals, 2019, 128, 280-289.                                                                                   | 5.1 | 44        |
| 43 | On the dynamics of fractional maps with power-law, exponential decay and Mittag–Leffler memory.<br>Chaos, Solitons and Fractals, 2019, 127, 364-388.                                                                                | 5.1 | 42        |
| 44 | Modeling and simulation of nonlinear dynamical system in the frame of nonlocal and non-singular derivatives. Chaos, Solitons and Fractals, 2019, 127, 146-157.                                                                      | 5.1 | 32        |
| 45 | Numerical Methods for Fractional Differentiation. Springer Series in Computational Mathematics, 2019, , .                                                                                                                           | 0.2 | 52        |
| 46 | Mathematical modeling and analysis of two-variable system with noninteger-order derivative. Chaos, 2019, 29, 013145.                                                                                                                | 2.5 | 62        |
| 47 | Modelling, analysis and simulations of some chaotic systems using derivative with Mittag–Leffler<br>kernel. Chaos, Solitons and Fractals, 2019, 125, 54-63.                                                                         | 5.1 | 37        |
| 48 | Mathematical analysis and computational experiments for an epidemic system with nonlocal and nonsingular derivative. Chaos, Solitons and Fractals, 2019, 126, 41-49.                                                                | 5.1 | 91        |
| 49 | Mathematical analysis and numerical simulation of a fractional reaction-diffusion system with<br>Holling-type III functional response. International Journal of Mathematical Modelling and Numerical<br>Optimisation, 2019, 9, 196. | 0.2 | 2         |
| 50 | Spatiotemporal patterns in the Belousov–Zhabotinskii reaction systems with Atangana–Baleanu<br>fractional order derivative. Physica A: Statistical Mechanics and Its Applications, 2019, 523, 1072-1090.                            | 2.6 | 93        |
| 51 | Behavioural study of symbiosis dynamics via the Caputo and Atangana–Baleanu fractional derivatives.<br>Chaos, Solitons and Fractals, 2019, 122, 89-101.                                                                             | 5.1 | 39        |
| 52 | Numerical Techniques for Fractional Competition Dynamics with Power-, Exponential- and Mittag-Leffler Laws. Studies in Systems, Decision and Control, 2019, , 313-332.                                                              | 1.0 | 1         |
| 53 | Numerical Solution of Space-Time-Fractional Reaction-Diffusion Equations via the Caputo and Riesz Derivatives. Studies in Systems, Decision and Control, 2019, , 161-188.                                                           | 1.0 | 5         |
| 54 | Mathematical modelling and analysis of love dynamics: A fractional approach. Physica A: Statistical Mechanics and Its Applications, 2019, 525, 849-865.                                                                             | 2.6 | 37        |

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | On the formulation of Adams-Bashforth scheme with Atangana-Baleanu-Caputo fractional derivative<br>to model chaotic problems. Chaos, 2019, 29, 023111.                                                                              | 2.5 | 126       |
| 56 | Numerical Solutions and Pattern Formation Process in Fractional Diffusion-Like Equations. Studies in Systems, Decision and Control, 2019, , 195-216.                                                                                | 1.0 | 3         |
| 57 | Computational study of noninteger order system of predation. Chaos, 2019, 29, 013120.                                                                                                                                               | 2.5 | 21        |
| 58 | Review of Fractional Differentiation. Springer Series in Computational Mathematics, 2019, , 1-82.                                                                                                                                   | 0.2 | 6         |
| 59 | Finite Difference Approximations. Springer Series in Computational Mathematics, 2019, , 83-137.                                                                                                                                     | 0.2 | 3         |
| 60 | Numerical analysis and pattern formation process for space-fractional superdiffusive systems.<br>Discrete and Continuous Dynamical Systems - Series S, 2019, 12, 543-566.                                                           | 1.1 | 11        |
| 61 | High-order solvers for space-fractional differential equations with Riesz derivative. Discrete and<br>Continuous Dynamical Systems - Series S, 2019, 12, 567-590.                                                                   | 1.1 | 12        |
| 62 | Efficient numerical method for a model arising in biological stoichiometry of tumour dynamics.<br>Discrete and Continuous Dynamical Systems - Series S, 2019, 12, 591-613.                                                          | 1.1 | 4         |
| 63 | Numerical solution for a problem arising in angiogenic signalling. AIMS Mathematics, 2019, 4, 43-60.                                                                                                                                | 1.6 | 4         |
| 64 | Numerical Approximation of Caputo–Fabrizio Differentiation. Springer Series in Computational<br>Mathematics, 2019, , 175-194.                                                                                                       | 0.2 | 0         |
| 65 | Numerical Approximation of Caputo Differentiation. Springer Series in Computational Mathematics, 2019, , 161-173.                                                                                                                   | 0.2 | 0         |
| 66 | Mathematical analysis and numerical simulation of a fractional reaction-diffusion system with<br>Holling-type III functional response. International Journal of Mathematical Modelling and Numerical<br>Optimisation, 2019, 9, 196. | 0.2 | 0         |
| 67 | Numerical Approximation of Riemann–Liouville Differentiation. Springer Series in Computational Mathematics, 2019, , 139-160.                                                                                                        | 0.2 | 0         |
| 68 | Preface: New trends on numerical analysis and analytical methods with their applications to real world problems. Discrete and Continuous Dynamical Systems - Series S, 2019, 12, âº-âº.                                             | 1.1 | 1         |
| 69 | Application to Partial Fractional Differential Equation. Springer Series in Computational Mathematics, 2019, , 251-328.                                                                                                             | 0.2 | 0         |
| 70 | Application to Ordinary Fractional Differential Equations. Springer Series in Computational Mathematics, 2019, , 203-249.                                                                                                           | 0.2 | 0         |
| 71 | Numerical approach to fractional blow-up equations with Atangana-Baleanu derivative in Riemann-Liouville sense. Mathematical Modelling of Natural Phenomena, 2018, 13, 7.                                                           | 2.4 | 36        |
| 72 | Efficient numerical simulation of non-integer-order space-fractional reaction-diffusion equation via the Riemann-Liouville operator. European Physical Journal Plus, 2018, 133, 1.                                                  | 2.6 | 26        |

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Robustness of fractional difference schemes via the Caputo subdiffusion-reaction equations. Chaos,<br>Solitons and Fractals, 2018, 111, 119-127.                                                                   | 5.1 | 53        |
| 74 | New numerical approach for fractional differential equations. Mathematical Modelling of Natural Phenomena, 2018, 13, 3.                                                                                            | 2.4 | 209       |
| 75 | Mathematical and computational studies of fractional reaction-diffusion system modelling predator-prey interactions. Journal of Numerical Mathematics, 2018, .                                                     | 3.5 | 3         |
| 76 | Modelling and simulation of a dynamical system with the Atangana-Baleanu fractional derivative.<br>European Physical Journal Plus, 2018, 133, 1.                                                                   | 2.6 | 72        |
| 77 | Modelling and formation of spatiotemporal patterns of fractional predation system in subdiffusion and superdiffusion scenarios. European Physical Journal Plus, 2018, 133, 1.                                      | 2.6 | 28        |
| 78 | Numerical simulations of chaotic and complex spatiotemporal patterns in fractional reaction–diffusion systems. Computational and Applied Mathematics, 2018, 37, 2166-2189.                                         | 1.3 | 43        |
| 79 | Dynamical study of two predators and one prey system with fractional Fourier transform method.<br>Numerical Methods for Partial Differential Equations, 2018, 34, 1614-1636.                                       | 3.6 | 7         |
| 80 | Mathematical analysis and numerical simulation of chaotic noninteger order differential systems<br>with Riemannâ€Liouville derivative. Numerical Methods for Partial Differential Equations, 2018, 34,<br>274-295. | 3.6 | 40        |
| 81 | Numerical simulations of multilingual competition dynamics with nonlocal derivative. Chaos,<br>Solitons and Fractals, 2018, 117, 175-182.                                                                          | 5.1 | 20        |
| 82 | Numerical patterns in system of integer and non-integer order derivatives. Chaos, Solitons and Fractals, 2018, 115, 143-153.                                                                                       | 5.1 | 21        |
| 83 | Numerical patterns in reaction–diffusion system with the Caputo and Atangana–Baleanu fractional derivatives. Chaos, Solitons and Fractals, 2018, 115, 160-169.                                                     | 5.1 | 47        |
| 84 | Analysis and numerical simulation of multicomponent system with Atangana–Baleanu fractional derivative. Chaos, Solitons and Fractals, 2018, 115, 127-134.                                                          | 5.1 | 43        |
| 85 | Chaotic behaviour in system of noninteger-order ordinary differential equations. Chaos, Solitons and Fractals, 2018, 115, 362-370.                                                                                 | 5.1 | 56        |
| 86 | Focus Point on Modelling Complex Real-World Problems with Fractal and New Trends of Fractional Differentiation. European Physical Journal Plus, 2018, 133, 1.                                                      | 2.6 | 8         |
| 87 | Riemann-Liouville Fractional Derivative and Application to Model Chaotic Differential Equations.<br>Progress in Fractional Differentiation and Applications, 2018, 4, 99-110.                                      | 0.6 | 22        |
| 88 | Numerical analysis of polio model: A new approach to epidemiological model using derivative with<br>Mittag-Leffler Kernel. Discrete and Continuous Dynamical Systems - Series S, 2018, .                           | 1.1 | 0         |
| 89 | Numerical Simulation of Noninteger Order System in Subdiffusive, Diffusive, and Superdiffusive Scenarios. Journal of Computational and Nonlinear Dynamics, 2017, 12, .                                             | 1.2 | 31        |
| 90 | Barycentric Jacobi Spectral Method for Numerical Solutions of the Generalized Burgers-Huxley<br>Equation. International Journal of Nonlinear Sciences and Numerical Simulation, 2017, 18, 67-81.                   | 1.0 | 5         |

| #   | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Numerical approximation of nonlinear fractional parabolic differential equations with<br>Caputo–Fabrizio derivative in Riemann–Liouville sense. Chaos, Solitons and Fractals, 2017, 99, 171-179.          | 5.1 | 71        |
| 92  | Mathematical study of multispecies dynamics modeling predator–prey spatial interactions. Journal of<br>Numerical Mathematics, 2017, 25, 1-16.                                                             | 3.5 | 21        |
| 93  | Mathematical analysis and numerical simulation of two-component system with non-integer-order derivative in high dimensions. Advances in Difference Equations, 2017, 2017, .                              | 3.5 | 19        |
| 94  | Mathematical modelling and analysis of two-component system with Caputo fractional derivative order. Chaos, Solitons and Fractals, 2017, 103, 544-554.                                                    | 5.1 | 49        |
| 95  | Analysis of Mathematics and Numerical Pattern Formation in Superdiffusive Fractional<br>Multicomponent System. Advances in Applied Mathematics and Mechanics, 2017, 9, 1438-1460.                         | 1.2 | 16        |
| 96  | Analysis and application of new fractional Adams–Bashforth scheme with Caputo–Fabrizio derivative.<br>Chaos, Solitons and Fractals, 2017, 105, 111-119.                                                   | 5.1 | 89        |
| 97  | Spatiotemporal Dynamics of Fractional Predator–Prey System with Stage Structure for the Predator.<br>International Journal of Applied and Computational Mathematics, 2017, 3, 903-924.                    | 1.6 | 15        |
| 98  | Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order. Communications in Nonlinear Science and Numerical Simulation, 2017, 44, 304-317. | 3.3 | 99        |
| 99  | Fourier spectral method for higher order space fractional reaction–diffusion equations.<br>Communications in Nonlinear Science and Numerical Simulation, 2016, 40, 112-128.                               | 3.3 | 120       |
| 100 | Numerical solution of diffusive HBV model in a fractional medium. SpringerPlus, 2016, 5, 1643.                                                                                                            | 1.2 | 37        |
| 101 | Numerical solution of fractional-in-space nonlinear SchrĶdinger equation with the Riesz fractional derivative. European Physical Journal Plus, 2016, 131, 1.                                              | 2.6 | 66        |
| 102 | Solution of Pattern Waves for Diffusive Fisher-like Non-linear Equations with Adaptive Methods.<br>International Journal of Nonlinear Sciences and Numerical Simulation, 2016, 17, 291-304.               | 1.0 | 8         |
| 103 | Mathematical analysis and numerical simulation of patterns in fractional and classical reaction-diffusion systems. Chaos, Solitons and Fractals, 2016, 93, 89-98.                                         | 5.1 | 65        |
| 104 | Mathematical study of two-variable systems with adaptive numerical methods. Numerical Analysis and Applications, 2016, 9, 218-230.                                                                        | 0.4 | 9         |
| 105 | Effect of spatial configuration of an extended nonlinear Kierstead–Slobodkin reaction-transport<br>model with adaptive numerical scheme. SpringerPlus, 2016, 5, 303.                                      | 1.2 | 13        |
| 106 | Numerical simulations of multicomponent ecological models with adaptive methods. Theoretical<br>Biology and Medical Modelling, 2016, 13, 1.                                                               | 2.1 | 61        |
| 107 | Existence and Permanence in a Diffusive KiSS Model with Robust Numerical Simulations. International<br>Journal of Differential Equations, 2015, 2015, 1-8.                                                | 0.8 | 8         |
| 108 | Robust IMEX Schemes for Solving Two-Dimensional Reaction–Diffusion Models. International Journal of Nonlinear Sciences and Numerical Simulation, 2015, 16, 271-284.                                       | 1.0 | 31        |

| #   | Article                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Numerical Solution of Singular Patterns in One-dimensional Gray-Scott-like Models. International Journal of Nonlinear Sciences and Numerical Simulation, 2014, 15, 437-462. | 1.0 | 43        |
| 110 | Higher-order time-stepping methods for time-dependent reaction–diffusion equations arising in biology. Applied Mathematics and Computation, 2014, 240, 30-50.               | 2.2 | 73        |
| 111 | Mathematical analysis and numerical simulation of a tumor-host model with chemotherapy application. Communications in Mathematical Biology and Neuroscience, 0, , .         | 0.0 | 2         |
| 112 | A fitted numerical method for a model arising in HIV related cancer-immune system dynamics.<br>Communications in Mathematical Biology and Neuroscience, 0, , .              | 0.0 | 0         |
| 113 | A fitted operator method for tumor cells dynamics in their micro-environment. Communications in<br>Mathematical Biology and Neuroscience, 0, , .                            | 0.0 | 0         |