Dan Luo

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2054969/dan-luo-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

66 118 4,637 36 h-index g-index citations papers 6,629 6.13 124 14.9 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
118	Evidence of Morphological Change in Sulfur Cathodes upon Irradiation by Synchrotron X-rays. <i>ACS Energy Letters</i> , 2022 , 7, 577-582	20.1	1
117	A MOF-Derivative Decorated Hierarchical Porous Host Enabling Ultrahigh Rates and Superior Long-Term Cycling of Dendrite-Free Zn Metal Anodes <i>Advanced Materials</i> , 2022 , e2110047	24	19
116	Design of Quasi-MOF Nanospheres as a Dynamic Electrocatalyst toward Accelerated Sulfur Reduction Reaction for High-Performance LithiumBulfur Batteries (Adv. Mater. 2/2022). <i>Advanced Materials</i> , 2022 , 34, 2270015	24	
115	Coordinatively Deficient Single-atom Fe-N-C Electrocatalyst with Optimized Electronic Structure for High-performance Lithium-sulfur Batteries. <i>Energy Storage Materials</i> , 2022 , 46, 269-277	19.4	10
114	Thermal migration towards constructing W-W dual-sites for boosted alkaline hydrogen evolution reaction <i>Nature Communications</i> , 2022 , 13, 763	17.4	2
113	Simultaneously achieving fast sulfur redox kinetics and high-loading in lithiumBulfur batteries. <i>Carbon</i> , 2022 , 187, 451-461	10.4	2
112	Porous organic polymers for Li-chemistry-based batteries: functionalities and characterization studies <i>Chemical Society Reviews</i> , 2022 ,	58.5	8
111	Emerging Trends in Sustainable CO Management Materials Advanced Materials, 2022, e2201547	24	4
110	Bioinspired Tough Solid-State Electrolyte for Flexible Ultralong-Life Zinc-Air Battery <i>Advanced Materials</i> , 2022 , e2110585	24	7
109	A MOF-Derivative Decorated Hierarchical Porous Host Enabling Ultrahigh Rates and Superior Long-Term Cycling of Dendrite-Free Zn Metal Anodes (Adv. Mater. 14/2022). <i>Advanced Materials</i> , 2022 , 34, 2270109	24	
108	Engineering checkerboard-like heterostructured sulfur electrocatalyst towards high-performance lithium sulfur batteries. <i>Chemical Engineering Journal</i> , 2022 , 440, 135990	14.7	1
107	Engineering Electrochemical Surface for Efficient Carbon Dioxide Upgrade. <i>Advanced Energy Materials</i> , 2022 , 12, 2103289	21.8	3
106	Nano-crumples induced Sn-Bi bimetallic interface pattern with moderate electron bank for highly efficient CO electroreduction <i>Nature Communications</i> , 2022 , 13, 2486	17.4	6
105	Integrating Nanoreactor with ONbl Heterointerface Design and Defects Engineering Toward High-Efficiency and Longevous Sodium Ion Battery (Adv. Energy Mater. 18/2022). <i>Advanced Energy Materials</i> , 2022 , 12, 2270071	21.8	
104	Two-Photon Time-Gated In Vivo Imaging of Dihydrolipoic-Acid-Decorated Gold Nanoclusters <i>Materials</i> , 2021 , 14,	3.5	1
103	Design of Quasi-MOF Nanospheres as a Dynamic Electrocatalyst toward Accelerated Sulfur Reduction Reaction for High-Performance Lithium-Sulfur Batteries. <i>Advanced Materials</i> , 2021 , e2105547	1 ²⁴	18
102	Hierarchically Porous TiC MXene with Tunable Active Edges and Unsaturated Coordination Bonds for Superior Lithium-Sulfur Batteries. <i>ACS Nano</i> , 2021 ,	16.7	10

(2021-2021)

101	Modulating Metal©rganic Frameworks as Advanced Oxygen Electrocatalysts. <i>Advanced Energy Materials</i> , 2021 , 11, 2003291	21.8	34	
100	"Two Ships in a Bottle" Design for Zn-Ag-O Catalyst Enabling Selective and Long-Lasting CO Electroreduction. <i>Journal of the American Chemical Society</i> , 2021 , 143, 6855-6864	16.4	36	
99	Magnetic-Field-Stimulated Efficient Photocatalytic N2 Fixation over Defective BaTiO3 Perovskites. <i>Angewandte Chemie</i> , 2021 , 133, 12017-12025	3.6	5	
98	Röktitelbild: Magnetic-Field-Stimulated Efficient Photocatalytic N2 Fixation over Defective BaTiO3 Perovskites (Angew. Chem. 21/2021). <i>Angewandte Chemie</i> , 2021 , 133, 12252-12252	3.6		
97	Magnetic-Field-Stimulated Efficient Photocatalytic N Fixation over Defective BaTiO Perovskites. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 11910-11918	16.4	33	
96	Baunal Activation toward Intrinsic Lattice Deficiency in Carbon Nanotube Microspheres for High-Energy and Long-Lasting Lithium Bulfur Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2100497	21.8	16	
95	Establishing the Preferential Adsorption of Anion-Dominated Solvation Structures in the Electrolytes for High-Energy-Density Lithium Metal Batteries. <i>Advanced Functional Materials</i> , 2021 , 31, 2011109	15.6	16	
94	Evolution of atomic-scale dispersion of FeNx in hierarchically porous 3D air electrode to boost the interfacial electrocatalysis of oxygen reduction in PEMFC. <i>Nano Energy</i> , 2021 , 83, 105734	17.1	19	
93	Aligned sulfur-deficient ZnS1⊠ nanotube arrays as efficient catalyzer for high-performance lithium/sulfur batteries. <i>Nano Energy</i> , 2021 , 84, 105891	17.1	31	
92	Consumption of Entrained Gases Within Bifilms During a Mg-Alloy Casting Process. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 2021 , 52, 3093-3106	2.5		
91	Electrolyte Design for Lithium Metal Anode-Based Batteries Toward Extreme Temperature Application. <i>Advanced Science</i> , 2021 , 8, e2101051	13.6	22	
90	Self-Assembled Facilitated Transport Membranes with Tunable Carrier Distribution for Ethylene/Ethane Separation. <i>Advanced Functional Materials</i> , 2021 , 31, 2104349	15.6	2	
89	Unsaturated coordination polymer frameworks as multifunctional sulfur reservoir for fast and durable lithium-sulfur batteries. <i>Nano Energy</i> , 2021 , 79, 105393	17.1	22	
88	Microporous framework membranes for precise molecule/ion separations. <i>Chemical Society Reviews</i> , 2021 , 50, 986-1029	58.5	58	
87	Deciphering interpenetrated interface of transition metal oxides/phosphates from atomic level for reliable Li/S electrocatalytic behavior. <i>Nano Energy</i> , 2021 , 81, 105602	17.1	23	
86	Analogous Mixed Matrix Membranes with Self-Assembled Interface Pathways. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 5864-5870	16.4	10	
85	Analogous Mixed Matrix Membranes with Self-Assembled Interface Pathways. <i>Angewandte Chemie</i> , 2021 , 133, 5928-5934	3.6	1	
84	Localized Polysulfide Injector for the Activation of Bulk Lithium Sulfide. <i>Journal of the American Chemical Society</i> , 2021 , 143, 2185-2189	16.4	14	

83	Strain Engineering of a MXene/CNT Hierarchical Porous Hollow Microsphere Electrocatalyst for a High-Efficiency Lithium Polysulfide Conversion Process. <i>Angewandte Chemie</i> , 2021 , 133, 2401-2408	3.6	7
82	AmorphousBrystalline-heterostructured niobium oxide as two-in-one host matrix for high-performance lithiumBulfur batteries. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 11160-11167	13	6
81	Constructing multifunctional solid electrolyte interface via in-situ polymerization for dendrite-free and low N/P ratio lithium metal batteries. <i>Nature Communications</i> , 2021 , 12, 186	17.4	61
80	Hierarchical Micro-Nanoclusters of Bimetallic Layered Hydroxide Polyhedrons as Advanced Sulfur Reservoir for High-Performance Lithium-Sulfur Batteries. <i>Advanced Science</i> , 2021 , 8, 2003400	13.6	19
79	Innentitelbild: Strain Engineering of a MXene/CNT Hierarchical Porous Hollow Microsphere Electrocatalyst for a High-Efficiency Lithium Polysulfide Conversion Process (Angew. Chem. 5/2021). <i>Angewandte Chemie</i> , 2021 , 133, 2198-2198	3.6	
78	High Entropy Alloys as Filler Metals for Joining. <i>Entropy</i> , 2021 , 23,	2.8	6
77	Bimetallic Hollow Tubular NiCoO as a Bifunctional Electrocatalyst for Enhanced Oxygen Reduction and Evolution Reaction. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 7334-7342	9.5	8
76	A new defect-rich and ultrathin ZnCo layered double hydroxide/carbon nanotubes architecture to facilitate catalytic conversion of polysulfides for high-performance Li-S batteries. <i>Chemical Engineering Journal</i> , 2021 , 417, 129248	14.7	6
75	Design Zwitterionic Amorphous Conjugated Micro-/Mesoporous Polymer Assembled Nanotentacle as Highly Efficient Sulfur Electrocatalyst for Lithium-Sulfur Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2101926	21.8	10
74	Dual-Function Electrolyte Additive for Highly Reversible Zn Anode. <i>Advanced Energy Materials</i> , 2021 , 11, 2102010	21.8	47
73	Engineering Oversaturated Fe-N Multifunctional Catalytic Sites for Durable Lithium-Sulfur Batteries. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 26622-26629	16.4	23
72	Strain Engineering of a MXene/CNT Hierarchical Porous Hollow Microsphere Electrocatalyst for a High-Efficiency Lithium Polysulfide Conversion Process. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 2371-2378	16.4	78
71	Two-dimensional Materials for all-solid-state Lithium Batteries Advanced Materials, 2021, e2108079	24	8
70	Solution-processable two-dimensional ultrathin nanosheets induced by self-assembling geometrically-matched alkane. <i>Nano Energy</i> , 2020 , 72, 104689	17.1	6
69	Revealing the Rapid Electrocatalytic Behavior of Ultrafine Amorphous Defective NbO Nanocluster toward Superior Li-S Performance. <i>ACS Nano</i> , 2020 , 14, 4849-4860	16.7	111
68	Three-dimensionally ordered macro-microporous metal organic frameworks with strong sulfur immobilization and catalyzation for high-performance lithium-sulfur batteries. <i>Nano Energy</i> , 2020 , 72, 104685	17.1	83
67	Tantalum-Based Electrocatalyst for Polysulfide Catalysis and Retention for High-Performance Lithium-Sulfur Batteries. <i>Matter</i> , 2020 , 3, 920-934	12.7	55
66	Fast production of zinclexamethylenetetramine complex microflowers as an advanced sulfur reservoir for high-performance lithium ulfur batteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 5062-	5₫ <i>⋛</i> 9	7

(2019-2020)

65	Polysulfide Barrier toward High-Performance Lithium Bulfur Batteries (Adv. Mater. 4/2020). Advanced Materials, 2020, 32, 2070030	24	4
64	Polysulfide Regulation by the Zwitterionic Barrier toward Durable Lithium-Sulfur Batteries. <i>Journal of the American Chemical Society</i> , 2020 , 142, 3583-3592	16.4	95
63	Three-Dimensional Graphene Oxide-Supported Zinc Oxide Scaffold as a High-Efficiency Adsorbent for Desulfurization. <i>Nano</i> , 2020 , 15, 2050059	1.1	2
62	Low-Bandgap Se-Deficient Antimony Selenide as a Multifunctional Polysulfide Barrier toward High-Performance Lithium-Sulfur Batteries. <i>Advanced Materials</i> , 2020 , 32, e1904876	24	120
61	Engineering the Conductive Network of Metal Oxide-Based Sulfur Cathode toward Efficient and Longevous LithiumBulfur Batteries. <i>Advanced Energy Materials</i> , 2020 , 10, 2002076	21.8	60
60	Boft on rigidIhanohybrid as the self-supporting multifunctional cathode electrocatalyst for high-performance lithium-polysulfide batteries. <i>Nano Energy</i> , 2020 , 78, 105293	17.1	21
59	Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives. <i>Chemical Society Reviews</i> , 2020 , 49, 5407-5445	58.5	121
58	d-Orbital steered active sites through ligand editing on heterometal imidazole frameworks for rechargeable zinc-air battery. <i>Nature Communications</i> , 2020 , 11, 5858	17.4	49
57	Deep-Breathing Honeycomb-like Co-N-C Nanopolyhedron Bifunctional Oxygen Electrocatalysts for Rechargeable Zn-Air Batteries. <i>IScience</i> , 2020 , 23, 101404	6.1	24
56	A Combined Ordered Macro-Mesoporous Architecture Design and Surface Engineering Strategy for High-Performance Sulfur Immobilizer in Lithium-Sulfur Batteries. <i>Small</i> , 2020 , 16, e2001089	11	27
55	Regulating the Li-Solvation Structure of Ester Electrolyte for High-Energy-Density Lithium Metal Batteries. <i>Small</i> , 2020 , 16, e2004688	11	15
54	Manipulating Au-CeO Interfacial Structure Toward Ultrahigh Mass Activity and Selectivity for CO Reduction. <i>ChemSusChem</i> , 2020 , 13, 6621-6628	8.3	7
53	Dynamic electrocatalyst with current-driven oxyhydroxide shell for rechargeable zinc-air battery. <i>Nature Communications</i> , 2020 , 11, 1952	17.4	93
52	Rational design of tailored porous carbon-based materials for CO2 capture. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 20985-21003	13	84
51	Thermodynamically Controlled Self-Assembly of Hierarchically Staggered Architecture as an Osteoinductive Alternative to Bone Autografts. <i>Advanced Functional Materials</i> , 2019 , 29, 1806445	15.6	25
50	3D Nanowire Arrayed Cu Current Collector toward Homogeneous Alloying Anode Deposition for Enhanced Sodium Storage. <i>Advanced Energy Materials</i> , 2019 , 9, 1900673	21.8	21
49	Ultra-Low Interfacial Tension Foam System for Enhanced Oil Recovery. <i>Applied Sciences</i> (Switzerland), 2019 , 9, 2155	2.6	14
48	Multidimensional Ordered Bifunctional Air Electrode Enables Flash Reactants Shuttling for High-Energy Flexible Zn-Air Batteries. <i>Advanced Energy Materials</i> , 2019 , 9, 1900911	21.8	85

47	"Ship in a Bottle" Design of Highly Efficient Bifunctional Electrocatalysts for Long-Lasting Rechargeable Zn-Air Batteries. <i>ACS Nano</i> , 2019 , 13, 7062-7072	16.7	78
46	Electrochemically primed functional redox mediator generator from the decomposition of solid state electrolyte. <i>Nature Communications</i> , 2019 , 10, 1890	17.4	35
45	Synergistic Engineering of Defects and Architecture in Binary Metal Chalcogenide toward Fast and Reliable Lithium Bulfur Batteries. <i>Advanced Energy Materials</i> , 2019 , 9, 1900228	21.8	121
44	ZincAir Batteries: An Oxygen-Vacancy-Rich Semiconductor-Supported Bifunctional Catalyst for Efficient and Stable ZincAir Batteries (Adv. Mater. 6/2019). <i>Advanced Materials</i> , 2019 , 31, 1970043	24	2
43	Layer-Based Heterostructured Cathodes for Lithium-Ion and Sodium-Ion Batteries. <i>Advanced Functional Materials</i> , 2019 , 29, 1808522	15.6	61
42	Multifunctional Nano-Architecting of Si Electrode for High-Performance Lithium-Ion Battery Anode. Journal of the Electrochemical Society, 2019 , 166, A2776-A2783	3.9	3
41	Sodium Ion Batteries: 3D Nanowire Arrayed Cu Current Collector toward Homogeneous Alloying Anode Deposition for Enhanced Sodium Storage (Adv. Energy Mater. 28/2019). <i>Advanced Energy Materials</i> , 2019 , 9, 1970111	21.8	
40	In-situ ion-activated carbon nanospheres with tunable ultramicroporosity for superior CO2 capture. <i>Carbon</i> , 2019 , 143, 531-541	10.4	60
39	An Oxygen-Vacancy-Rich Semiconductor-Supported Bifunctional Catalyst for Efficient and Stable Zinc-Air Batteries. <i>Advanced Materials</i> , 2019 , 31, e1806761	24	92
38	Two-Dimensional Phosphorus-Doped Carbon Nanosheets with Tunable Porosity for Oxygen Reactions in Zinc-Air Batteries. <i>ACS Catalysis</i> , 2018 , 8, 2464-2472	13.1	129
38		13.1	129
	Reactions in Zinc-Air Batteries. ACS Catalysis, 2018, 8, 2464-2472 Biomimetic organization of a ruthenium-doped collagen-based carbon scaffold for hydrogen		
37	Reactions in Zinc-Air Batteries. <i>ACS Catalysis</i> , 2018 , 8, 2464-2472 Biomimetic organization of a ruthenium-doped collagen-based carbon scaffold for hydrogen evolution. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 2311-2317 Positive film-forming effect of fluoroethylene carbonate (FEC) on high-voltage cycling with	13	25
37	Reactions in Zinc-Air Batteries. <i>ACS Catalysis</i> , 2018 , 8, 2464-2472 Biomimetic organization of a ruthenium-doped collagen-based carbon scaffold for hydrogen evolution. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 2311-2317 Positive film-forming effect of fluoroethylene carbonate (FEC) on high-voltage cycling with three-electrode LiCoO2/Graphite pouch cell. <i>Electrochimica Acta</i> , 2018 , 269, 378-387 Embryonic-Like Mineralized Extracellular Matrix/Stem Cell Microspheroids as a Bone Graft	13	25
37 36 35	Biomimetic organization of a ruthenium-doped collagen-based carbon scaffold for hydrogen evolution. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 2311-2317 Positive film-forming effect of fluoroethylene carbonate (FEC) on high-voltage cycling with three-electrode LiCoO2/Graphite pouch cell. <i>Electrochimica Acta</i> , 2018 , 269, 378-387 Embryonic-Like Mineralized Extracellular Matrix/Stem Cell Microspheroids as a Bone Graft Substitute. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1800705 A Precisely Assembled Carbon Source to Synthesize Fluorescent Carbon Quantum Dots for Sensing	13 6.7 10.1	25376
37363534	Reactions in Zinc-Air Batteries. ACS Catalysis, 2018, 8, 2464-2472 Biomimetic organization of a ruthenium-doped collagen-based carbon scaffold for hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 2311-2317 Positive film-forming effect of fluoroethylene carbonate (FEC) on high-voltage cycling with three-electrode LiCoO2/Graphite pouch cell. Electrochimica Acta, 2018, 269, 378-387 Embryonic-Like Mineralized Extracellular Matrix/Stem Cell Microspheroids as a Bone Graft Substitute. Advanced Healthcare Materials, 2018, 7, e1800705 A Precisely Assembled Carbon Source to Synthesize Fluorescent Carbon Quantum Dots for Sensing Probes and Bioimaging Agents. Chemistry - A European Journal, 2018, 24, 2257-2263 3D Porous Carbon Sheets with Multidirectional Ion Pathways for Fast and Durable LithiumBulfur	13 6.7 10.1 4.8	25 37 6 8
3736353433	Reactions in Zinc-Air Batteries. ACS Catalysis, 2018, 8, 2464-2472 Biomimetic organization of a ruthenium-doped collagen-based carbon scaffold for hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 2311-2317 Positive film-forming effect of fluoroethylene carbonate (FEC) on high-voltage cycling with three-electrode LiCoO2/Graphite pouch cell. Electrochimica Acta, 2018, 269, 378-387 Embryonic-Like Mineralized Extracellular Matrix/Stem Cell Microspheroids as a Bone Graft Substitute. Advanced Healthcare Materials, 2018, 7, e1800705 A Precisely Assembled Carbon Source to Synthesize Fluorescent Carbon Quantum Dots for Sensing Probes and Bioimaging Agents. Chemistry - A European Journal, 2018, 24, 2257-2263 3D Porous Carbon Sheets with Multidirectional Ion Pathways for Fast and Durable LithiumBulfur Batteries. Advanced Energy Materials, 2018, 8, 1702381 A Lithium-Sulfur Battery using a 2D Current Collector Architecture with a Large-Sized Sulfur Host	13 6.7 10.1 4.8 21.8	25 37 6 8 132 61

Facile preparation of magnetic carbon nanotubes@ZIF-67 for rapid removal of 29 tetrabromobisphenol A from water sample. Environmental Science and Pollution Research, 2018, 25, $3560^{-1}3561^{\frac{1}{3}}$ The Dual-Play of 3D Conductive Scaffold Embedded with Co, N Codoped Hollow Polyhedra toward 28 21.8 83 High-Performance LiB Full Cell. Advanced Energy Materials, 2018, 8, 1802561 Surface decorated cobalt sulfide as efficient catalyst for oxygen evolution reaction and its intrinsic 27 7.3 24 activity. Journal of Catalysis, 2018, 367, 43-52 Stringed Bube on cubelhanohybrids as compact cathode matrix for high-loading and 26 193 35.4 lean-electrolyte lithiumBulfur batteries. Energy and Environmental Science, 2018, 11, 2372-2381 Electrophoretic deposition of functional organic molecules and composite films. Materials and 25 4.1 3 Manufacturing Processes, 2017, 32, 389-393 Colloidal strategies for electrophoretic deposition of organic-inorganic composites for biomedical 24 5.1 14 applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 516, 219-225 Hierarchical Porous Double-Shelled Electrocatalyst with Tailored Lattice Alkalinity toward 64 23 20.1 Bifunctional Oxygen Reactions for MetalAir Batteries. ACS Energy Letters, 2017, 2, 2706-2712 Tuning Shell Numbers of Transition Metal Oxide Hollow Microspheres toward Durable and Superior 16.7 22 72 Lithium Storage. ACS Nano, 2017, 11, 11521-11530 Ordered Superparticles with an Enhanced Photoelectric Effect by Sub-Nanometer Interparticle 15.6 2.1 24 Distance. Advanced Functional Materials, 2017, 27, 1701982 Highly Nitrogen-Doped Three-Dimensional Carbon Fibers Network with Superior Sodium Storage 20 9.5 33 Capacity. ACS Applied Materials & Interfaces, 2017, 9, 28604-28611 Enhanced Reversible Sodium-Ion Intercalation by Synergistic Coupling of Few-Layered MoS2 and 19 15.6 116 S-Doped Graphene. Advanced Functional Materials, 2017, 27, 1702562 Hierarchically Staggered Nanostructure of Mineralized Collagen as a Bone-Grafting Scaffold. 18 24 91 Advanced Materials, **2016**, 28, 8740-8748 Enhanced capacitive performance of MnO 2 - multiwalled carbon nanotube electrodes, prepared using lauryl gallate dispersant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 17 5.1 7 2016, 509, 504-511 Composite Polymer Metal Hydroxide Coatings with Flame-Retardant Properties. Materials and 16 4.1 4 Manufacturing Processes, **2016**, 31, 1201-1205 Electrophoretic deposition of tannic acid-polypyrrolidone films and composites. Journal of Colloid 15 9.3 21 and Interface Science, **2016**, 469, 177-183 Influence of over-discharge on the lifetime and performance of LiFePO4/graphite batteries. RSC 48 14 3.7 Advances, **2016**, 6, 30474-30483 Universal dispersing agent for electrophoretic deposition of inorganic materials with improved 13 9.3 13 adsorption, triggered by chelating monomers. Journal of Colloid and Interface Science, 2016, 462, 1-8 Hierarchical Structures of Bone and Bioinspired Bone Tissue Engineering. Small, 2016, 12, 4611-32 12 11 172

11	Abuse tolerance behavior of layered oxide-based Li-ion battery during overcharge and over-discharge. <i>RSC Advances</i> , 2016 , 6, 76897-76904	3.7	55
10	Electrophoretic deposition of flame retardant polymerfluntite coatings. <i>Materials Letters</i> , 2015 , 159, 106-109	3.3	8
9	Electrophoretic Deposition of Polyetheretherketone Composites, Containing Huntite and Alumina Platelets. <i>Journal of the Electrochemical Society</i> , 2015 , 162, D3057-D3062	3.9	20
8	Film deposition mechanisms and properties of optically active chelating polymer and composites. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2015 , 487, 17-25	5.1	9
7	Interparticle Forces Underlying Nanoparticle Self-Assemblies. <i>Small</i> , 2015 , 11, 5984-6008	11	85
6	Investigating the distance limit of a metal nanoparticle based spectroscopic ruler. <i>Biomedical Optics Express</i> , 2011 , 2, 1727-33	3.5	29
5	Building plasmonic nanostructures with DNA. <i>Nature Nanotechnology</i> , 2011 , 6, 268-76	28.7	673
4	Crosslinked poly(acrylonitrileglycidyl methacrylate) as a novel gel polymer electrolyte. <i>Materials Chemistry and Physics</i> , 2011 , 125, 231-235	4.4	14
3	Preparation and characterization of novel crosslinked poly[glycidyl methacrylatepoly(ethylene glycol) methyl ether methacrylate] as gel polymer electrolytes. <i>Journal of Applied Polymer Science</i> , 2011 , 120, 2979-2984	2.9	12
2	Integrating Nanoreactor with ONbo Heterointerface Design and Defects Engineering Toward High-Efficiency and Longevous Sodium Ion Battery. <i>Advanced Energy Materials</i> ,2103716	21.8	11
1	Engineering Oversaturated Fe-N5 Multifunctional Catalytic Sites for Durable Lithium-Sulfur Batteries. <i>Angewandte Chemie</i> ,	3.6	1