Jingen Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2054782/publications.pdf

Version: 2024-02-01

567281 395702 1,145 40 15 33 h-index citations g-index papers 40 40 40 1087 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Vector imaging of electric field-induced reversible magnetization reversal in exchange-biased multiferroic heterostructures. Science China Materials, 2022, 65, 186-192.	6.3	1
2	Magnetic Field Sensor Based on Magnetic Torque Effect and Surface Acoustic Wave With Enhanced Sensitivity. IEEE Transactions on Magnetics, 2022, 58, 1-6.	2.1	2
3	Ferromagnetic Resonance Vector Magnetic Sensor with High Sensitivity and Ultrawide Working Range. Advanced Materials Technologies, 2022, 7, 2100919.	5.8	4
4	A high-resolution electric field sensor based on piezoelectric bimorph composite. Smart Materials and Structures, 2022, 31, 025008.	3.5	5
5	A Magnetic Field Imaging System Based on TMR Sensors for Banknote Recognition. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-9.	4.7	1
6	Magnetic Sensor Based on Giant Magneto-Impedance in Commercial Inductors. IEEE Transactions on Industrial Electronics, 2021, 68, 7577-7583.	7.9	7
7	A Magnetoelectric Compass for In-Plane AC Magnetic Field Detection. IEEE Transactions on Industrial Electronics, 2021, 68, 3527-3536.	7.9	16
8	Highly Sensitive Magneto-Mechano-Electric Magnetic Field Sensor Based on Torque Effect. IEEE Sensors Journal, 2021, 21, 1409-1416.	4.7	4
9	Thermally activated giant piezoelectricity and enhanced interface elastic strainâ€mediated magnetoelectric coupling. Journal of the American Ceramic Society, 2021, 104, 896-902.	3.8	1
10	Unconventional piezoelectric coefficients in perovskite piezoelectric ceramics. Journal of Materiomics, 2021, 7, 254-263.	5.7	9
11	Magnetoelectric devices based on magnetoelectric bulk composites. Journal of Materials Chemistry C, 2021, 9, 5594-5614.	5.5	26
12	Strong dependence of magnetic damping and magnetization on deposition temperature in highly magnetostrictive NiZnAl ferrite thin films. IEEE Transactions on Magnetics, 2021, , 1-1.	2.1	2
13	Enhancing the Linearity of Giant Magnetoresistance Sensors by Magnetic Anisotropic Design and Low Temperature Annealing. IEEE Sensors Journal, 2021, 21, 27393-27399.	4.7	3
14	Piezoelectric Actuators and Motors: Materials, Designs, and Applications. Advanced Materials Technologies, 2020, 5, 1900716.	5.8	224
15	A ring-shaped linear ultrasonic motor based on PSN-PMS-PZT ceramic. Sensors and Actuators A: Physical, 2020, 309, 112036.	4.1	9
16	A ring-shaped, linear piezoelectric ultrasonic motor operating in <i>E01</i> mode. Applied Physics Letters, 2020, 116, .	3.3	15
17	Tailoring Artificial Mode to Enable Cofired Integration of Shearâ€type Piezoelectric Devices. Advanced Science, 2020, 7, 2001368.	11.2	7
18	Ultralow dielectric loss of BiScO3-PbTiO3 ceramics by Bi(Mn1/2Zr1/2)O3 modification. Journal of the European Ceramic Society, 2020, 40, 3003-3010.	5.7	22

#	Article	IF	CITATIONS
19	Quantitative domain engineering for realizing d36 piezoelectric coefficient in tetragonal ceramics. Acta Materialia, 2020, 188, 416-423.	7.9	9
20	Electric Field-Tunable Giant Magnetoresistance (GMR) Sensor with Enhanced Linear Range. ACS Applied Materials & Samp; Interfaces, 2020, 12, 8855-8861.	8.0	25
21	Reconfigurable Magnetoresistive Sensor Based on Magnetoelectric Coupling. Advanced Electronic Materials, 2020, 6, 1901061.	5.1	12
22	Electrode shape dependence of the barbell-shaped magneto-mechano-electric energy harvester for low-frequency applications. Sensors and Actuators A: Physical, 2019, 297, 111535.	4.1	10
23	Giant Piezoelectricity of Ternary Perovskite Ceramics at High Temperatures. Advanced Functional Materials, 2019, 29, 1807920.	14.9	50
24	Voltage Control of Perpendicular Exchange Bias in Multiferroic Heterostructures. Advanced Electronic Materials, 2019, 5, 1900192.	5.1	8
25	Quantitative studies of domain evolution in tetragonal BS–PT ceramics in electric poling and thermal depoling processes. Journal of Materials Chemistry C, 2019, 7, 4517-4526.	5.5	10
26	A Piezoelectric and Electromagnetic Dual Mechanism Multimodal Linear Actuator for Generating Macro- and Nanomotion. Research, 2019, 2019, 8232097.	5.7	12
27	A diffraction-plane-transformation model for quantitatively evaluating $90\hat{A}^{\circ}$ domain evolution in tetragonal BS-PT piezoelectric ceramic. Journal of Alloys and Compounds, 2018, 745, 669-676.	5.5	9
28	A multilayered-cylindrical piezoelectric shear actuator operating in shear ($<$ i> $>$ d15 $<$ /i> $>$) mode. Applied Physics Letters, 2018, 112, .	3.3	26
29	Magnetoelectric coupling of a magnetoelectric flux gate sensor in vibration noise circumstance. AIP Advances, 2018, 8, .	1.3	6
30	Enhanced piezoelectric performance of BiScO3-PbTiO3 ceramics modified by 0.03Pb(Sb1/2Nb1/2)O3. Journal of Alloys and Compounds, 2018, 731, 1140-1145.	5.5	15
31	Giant Piezoelectric Coefficients in Relaxor Piezoelectric Ceramic PNNâ€PZT for Vibration Energy Harvesting. Advanced Functional Materials, 2018, 28, 1706895.	14.9	152
32	Enhanced Resonance Magnetoelectric Coupling in $(1\hat{a}\in \mathbb{I})$ Connectivity Composites. Advanced Materials, 2017, 29, 1606022.	21.0	137
33	A magnetoelectric flux gate: new approach for weak DC magnetic field detection. Scientific Reports, 2017, 7, 8592.	3.3	32
34	A modified barbell-shaped PNN-PZT-PIN piezoelectric ceramic energy harvester. Applied Physics Letters, 2017, 111, .	3.3	25
35	A barbell-shaped high-temperature piezoelectric vibration energy harvester based on BiScO3-PbTiO3 ceramic. Applied Physics Letters, 2016, 109, .	3.3	47
36	A flexible, wave-shaped P(VDF-TrFE)/metglas piezoelectric composite for wearable applications. Journal of Applied Physics, $2016,120,$.	2.5	31

#	Article	IF	CITATION
37	Highâ€Temperature BiScO ₃ â€PbTiO ₃ Piezoelectric Vibration Energy Harvester. Advanced Functional Materials, 2016, 26, 7186-7194.	14.9	116
38	Investigation on Resonant Vibration Performances of Feâ€Doped BiScO ₃ â€"PbTiO ₃ Ceramics in Highâ€Temperature Environment. Journal of the American Ceramic Society, 2015, 98, 3145-3152.	3.8	19
39	MnO 2 doped PSN–PZN–PZT piezoelectric ceramics for resonant actuator application. Journal of Alloys and Compounds, 2014, 615, 676-682.	5.5	29
40	Vector analysis of electric-field-induced antiparallel magnetic domain evolution in ferromagnetic/ferroelectric heterostructures. Journal of Advanced Ceramics, 0, , 1.	17.4	7