
Igor V Alabugin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2054724/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	4.1 Strain-Promoted Azide–Alkyne Cycloaddition (SPAAC): Background, Substrate Preparation, and Reactivity. , 2022, , .		0
2	A Special Issue in Honor of Professor Josef Michl. Chemistry, 2022, 4, 270-271.	0.9	0
3	Remote Stereoelectronic Effects in Pyrrolidone- and Caprolactam-Substituted Phenols: Discrepancies in Antioxidant Properties Evaluated by Electrochemical Oxidation and H-Atom Transfer Reactivity. Journal of Organic Chemistry, 2022, 87, 5371-5384.	1.7	4
4	3-Trifluoromethylbenzyne: Precise Orientation in Cycloaddition Reaction Enabled Regioselective Synthesis of Trifluoromethylated Triptycenes. Synthesis, 2022, 54, 4971-4978.	1.2	3
5	Inverse α-Effect as the Ariadne's Thread on the Way to Tricyclic Aminoperoxides: Avoiding Thermodynamic Traps in the Labyrinth of Possibilities. Journal of the American Chemical Society, 2022, 144, 7264-7282.	6.6	17
6	Carboxylate as a Non-innocent L-Ligand: Computational and Experimental Search for Metal-Bound Carboxylate Radicals. Organic Letters, 2022, 24, 3817-3822.	2.4	13
7	Localized Antiaromaticity Hotspot Drives Reductive Dehydrogenative Cyclizations in Bis- and Mono-Helicenes. Journal of the American Chemical Society, 2022, 144, 12321-12338.	6.6	15
8	A Swiss Army knife for surface chemistry. Science, 2022, 377, 261-262.	6.0	0
9	Organocatalytic sulfoxidation. Tetrahedron, 2021, 78, 131784.	1.0	6
10	How to Review a Paper. Journal of Chemical Health and Safety, 2021, 28, 14-18.	1.1	2
11	Cycloaromatization reactions. , 2021, , 339-375.		0
12	Stalling chromophore synthesis of the fluorescent protein Venus reveals the molecular basis of the final oxidation step. Chemical Science, 2021, 12, 7735-7745.	3.7	8
13	Stereoelectronic power of oxygen in control of chemical reactivity: the anomeric effect is not alone. Chemical Society Reviews, 2021, 50, 10253-10345.	18.7	80
14	Anomeric effect, hyperconjugation and electrostatics: lessons from complexity in a classic stereoelectronic phenomenon. Chemical Society Reviews, 2021, 50, 10212-10252.	18.7	78
15	Tribute to Josef Michl. Chemistry, 2021, 3, 440-443.	0.9	1
16	Marriage of Peroxides and Nitrogen Heterocycles: Selective Three-Component Assembly, Peroxide-Preserving Rearrangement, and Stereoelectronic Source of Unusual Stability of Bridged Azaozonides. Journal of the American Chemical Society, 2021, 143, 6634-6648.	6.6	18
17	Mapping Câ^'Hâ‹â‹â M Interactions in Confined Spaces: (α″CyD ^{Me})Au, Ag, Cu Complexes Ra "Contraâ€electrostatic H Bonds―Masquerading as Anagostic Interactions**. Chemistry - A European Journal, 2021, 27, 8127-8142.	eveal 1.7	18
18	Expanding Stereoelectronic Limits of <i>endo</i> - <i>tet</i> Cyclizations: Synthesis of Benz[<i>b</i>]azepines from Donor–Acceptor Cyclopropanes. Journal of the American Chemical Society, 2021, 143, 13952-13961.	6.6	25

#	Article	IF	CITATIONS
19	New heterocycles via an intriguing visible-light-promoted 5-endo-dig cyclization. Chem Catalysis, 2021, 1, 976-977.	2.9	1
20	Cascade Transformations of 1-R-Ethynyl-9,10-anthraquinones with Amidines: Expanding Access to Isoaporphinoid Alkaloids. Molecules, 2021, 26, 6883.	1.7	2
21	Negative Charge as a Lens for Concentrating Antiaromaticity: Using a Pentagonal "Defect―and Helicene Strain for Cyclizations. Angewandte Chemie - International Edition, 2020, 59, 1256-1262.	7.2	32
22	Negative Charge as a Lens for Concentrating Antiaromaticity: Using a Pentagonal "Defect―and Helicene Strain for Cyclizations. Angewandte Chemie, 2020, 132, 1272-1278.	1.6	12
23	Lithium Salt Dissociation in Diblock Copolymer Electrolyte Using Fourier Transform Infrared Spectroscopy. Frontiers in Energy Research, 2020, 8, .	1.2	25
24	Determination of the pKaValues oftrans-Resveratrol, a Triphenolic Stilbene, by Singular Value Decomposition. Comparison with Theory. Journal of Physical Chemistry A, 2020, 124, 6294-6302.	1.1	11
25	How to Build Rigid Oxygen-Rich Tricyclic Heterocycles from Triketones and Hydrogen Peroxide: Control of Dynamic Covalent Chemistry with Inverse α-Effect. Journal of the American Chemical Society, 2020, 142, 14588-14607.	6.6	20
26	Antiaromaticity Gain Activates Tropone and Nonbenzenoid Aromatics as Normal-Electron-Demand Diels–Alder Dienes. Organic Letters, 2020, 22, 7083-7087.	2.4	18
27	Oxidative Photocyclization of Aromatic Schiff Bases in Synthesis of Phenanthridines and Other Aza-PAHs. International Journal of Molecular Sciences, 2020, 21, 5868.	1.8	15
28	Synthesis of unstrained Criegee intermediates: inverse α-effect and other protective stereoelectronic forces can stop Baeyer–Villiger rearrangement of γ-hydroperoxy-γ-peroxylactones. Chemical Science, 2020, 11, 5313-5322.	3.7	22
29	Phenalenannulations: Threeâ€Point Double Annulation Reactions that Convert Benzenes into Pyrenes. Angewandte Chemie - International Edition, 2020, 59, 14352-14357.	7.2	15
30	Impact of Excited-State Antiaromaticity Relief in a Fundamental Benzene Photoreaction Leading to Substituted Bicyclo[3.1.0]hexenes. Journal of the American Chemical Society, 2020, 142, 10942-10954.	6.6	37
31	Outstanding Reviewers for Chemical Science in 2019. Chemical Science, 2020, 11, 5853-5854.	3.7	Ο
32	Twofold π-Extension of Polyarenes via Double and Triple Radical Alkyne <i>peri</i> -Annulations: Radical Cascades Converging on the Same Aromatic Core. Journal of the American Chemical Society, 2020, 142, 8352-8366.	6.6	28
33	Phenalenannulations: Threeâ€Point Double Annulation Reactions that Convert Benzenes into Pyrenes. Angewandte Chemie, 2020, 132, 14458-14463.	1.6	2
34	[1,5]-Sigmatropic Shifts Regulated by Built-in Frustration. Journal of Physical Chemistry A, 2020, 124, 6016-6028.	1.1	5
35	Testing the limits of radical-anionic CH-amination: a 10-million-fold decrease in basicity opens a new path to hydroxyisoindolines <i>via</i> a mixed C–N/C–O-forming cascade. Chemical Science, 2020, 11, 6539-6555.	3.7	30
36	Hochkonversion von Reduktionsmitteln. Angewandte Chemie, 2019, 131, 5588-5607.	1.6	14

#	Article	IF	CITATIONS
37	Upconversion of Reductants. Angewandte Chemie - International Edition, 2019, 58, 5532-5550.	7.2	61
38	Controlled Evolution of the Cope Rearrangement: Transition from Concerted to Interrupted and Aborted Pericyclic Reactions Regulated by a Switch Built from an Intramolecular Frustrated Lewis Pair. Journal of Organic Chemistry, 2019, 84, 14844-14853.	1.7	8
39	Peroxycarbenium Ions as the "Gatekeepers―in Reaction Design: Assistance from Inverse Alphaâ€Effect in Threeâ€Component βâ€Alkoxyâ€Î²â€peroxylactones Synthesis. Chemistry - A European Journal, 2019, 25, 14460-14468.	1.7	15
40	Strain and stereoelectronics in cycloalkyne click chemistry. Mendeleev Communications, 2019, 29, 237-248.	0.6	39
41	Stereoelectronic Influence of a "Spectator―Propargylic Substituent Can Override Aromaticity Effects in Radical <i>Peri</i> -Cyclizations en Route to Expanded Polyaromatics. Journal of Organic Chemistry, 2019, 84, 1853-1862.	1.7	9
42	CO ₂ or SO ₂ : Should It Stay, or Should It Go?. Journal of Organic Chemistry, 2019, 84, 6232-6243.	1.7	34
43	Alkynes as Synthetic Equivalents of Ketones and Aldehydes: A Hidden Entry into Carbonyl Chemistry. Molecules, 2019, 24, 1036.	1.7	46
44	Hyperconjugation. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2019, 9, e1389.	6.2	80
45	Making endo-cyclizations favorable again: a conceptually new synthetic approach to benzotriazoles <i>>via</i> azide group directed lithiation/cyclization of 2-azidoaryl bromides. Organic and Biomolecular Chemistry, 2019, 17, 4523-4534.	1.5	10
46	Optimizing Amineâ€Mediated Alkyne–Allene Isomerization to Improve Benzannulation Cascades: Synergy between Theory and Experiments. European Journal of Organic Chemistry, 2019, 2019, 512-518.	1.2	19
47	Radical Alkyne peri â€Annulation Reactions for the Synthesis of Functionalized Phenalenes, Benzanthrenes, and Olympicene. Angewandte Chemie, 2018, 130, 3713-3717.	1.6	12
48	Alkyne Origami: Folding Oligoalkynes into Polyaromatics. Accounts of Chemical Research, 2018, 51, 1206-1219.	7.6	83
49	Interrupted Baeyer–Villiger Rearrangement: Building A Stereoelectronic Trap for the Criegee Intermediate. Angewandte Chemie, 2018, 130, 3430-3434.	1.6	16
50	Radical Alkyne <i>peri</i> â€Annulation Reactions for the Synthesis of Functionalized Phenalenes, Benzanthrenes, and Olympicene. Angewandte Chemie - International Edition, 2018, 57, 3651-3655.	7.2	38
51	Interrupted Baeyer–Villiger Rearrangement: Building A Stereoelectronic Trap for the Criegee Intermediate. Angewandte Chemie - International Edition, 2018, 57, 3372-3376.	7.2	64
52	Photochemical Activation of Enediyne Warheads: A Potential Tool for Targeted Antitumor Therapy. Molecular Pharmaceutics, 2018, 15, 768-797.	2.3	24
53	Stereoelectronic Effects: Analysis by Computational and Theoretical Methods. , 2018, , 451-502.		5
54	Ozone-Free Synthesis of Ozonides: Assembling Bicyclic Structures from 1,5-Diketones and Hydrogen Peroxide. Journal of Organic Chemistry, 2018, 83, 4402-4426.	1.7	44

#	Article	IF	CITATIONS
55	Isonitriles as Stereoelectronic Chameleons: The Donor–Acceptor Dichotomy in Radical Additions. Journal of the American Chemical Society, 2018, 140, 14272-14288.	6.6	53
56	Five Roads That Converge at the Cyclic Peroxy-Criegee Intermediates: BF ₃ -Catalyzed Synthesis of β-Hydroperoxy-β-peroxylactones. Journal of Organic Chemistry, 2018, 83, 13427-13445.	1.7	20
57	Frontispiece: Stereoelectronic Chameleons: The Donor–Acceptor Dichotomy of Functional Groups. Chemistry - A European Journal, 2017, 23, .	1.7	3
58	Full Cleavage of C≡C Bond in Electron-Deficient Alkynes via Reaction with Ethylenediamine. Australian Journal of Chemistry, 2017, 70, 421.	0.5	11
59	Drawing Catalytic Power from Charge Separation: Stereoelectronic and Zwitterionic Assistance in the Au(I)-Catalyzed Bergman Cyclization. Journal of the American Chemical Society, 2017, 139, 3406-3416.	6.6	73
60	Formaldehydeâ€Extruding Homolytic Aromatic Substitution via C→O Transposition: Selective †Tracelessâ€Linker' access to Congested Biaryl Bonds. Chemistry - A European Journal, 2017, 23, 9091-909	7. ^{1.7}	11
61	Photoredox-Initiated Radical Cascades Enabling Collective Synthesis of 33 Natural Products. CheM, 2017, 2, 753-755.	5.8	6
62	Changing the path of least resistance, or access to endo-dig products via a sequence of three exo-trig transition states: electronic effects in homoallyic ring expansion cascades of alkenyl isonitriles. Organic and Biomolecular Chemistry, 2017, 15, 4135-4143.	1.5	10
63	Stereoelectronic Control in the Ozoneâ€Free Synthesis of Ozonides. Angewandte Chemie, 2017, 129, 5037-5041.	1.6	15
64	Stereoelectronic Control in the Ozoneâ€Free Synthesis of Ozonides. Angewandte Chemie - International Edition, 2017, 56, 4955-4959.	7.2	44
65	Coupling Radical Homoallylic Expansions with C–C Fragmentations for the Synthesis of Heteroaromatics: Quinolines from Reactions of <i>o</i> -Alkenylarylisonitriles with Aryl, Alkyl, and Perfluoroalkyl Radicals. Journal of Organic Chemistry, 2017, 82, 4265-4278.	1.7	44
66	Regioselective Oneâ€Pot Synthesis of Triptycenes via Triple ycloadditions of Arynes to Ynolates. Angewandte Chemie - International Edition, 2017, 56, 1298-1302.	7.2	65
67	Regioselective Oneâ€Pot Synthesis of Triptycenes via Triple ycloadditions of Arynes to Ynolates. Angewandte Chemie, 2017, 129, 1318-1322.	1.6	40
68	Twisted Cycloalkynes and Remote Activation of "Click―Reactivity. CheM, 2017, 3, 629-640.	5.8	33
69	Coupling N–H Deprotonation, C–H Activation, and Oxidation: Metal-Free C(sp ³)–H Aminations with Unprotected Anilines. Journal of the American Chemical Society, 2017, 139, 16210-16221.	6.6	78
70	Substituent effects on stereoselectivity of dihalocarbene reactions with cyclohexadiene and on the reactivity of bis-dihalocyclopropanes in electrophilic nitrations en route to pyrimidine N-oxides. Organic and Biomolecular Chemistry, 2017, 15, 9433-9441.	1.5	11
71	Organocatalyzed synthesis of fluorinated poly(aryl thioethers). Nature Communications, 2017, 8, 166.	5.8	33
72	Electrochemical behavior of <i>N</i> â€oxyphthalimides: Cascades initiating selfâ€sustaining catalytic reductive <i>N</i> ― <i>O</i> bond cleavage. Journal of Physical Organic Chemistry, 2017, 30, e3744.	0.9	40

#	Article	IF	CITATIONS
73	Stereoelectronic Interactions as a Probe for the Existence of the Intramolecular α-Effect. Journal of the American Chemical Society, 2017, 139, 10799-10813.	6.6	66
74	Stereoelectronic Chameleons: The Donor–Acceptor Dichotomy of Functional Groups. Chemistry - A European Journal, 2017, 23, 3225-3245.	1.7	95
75	The Baldwin rules: revised and extended. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2016, 6, 487-514.	6.2	120
76	Alkynes as Linchpins for the Additive Annulation of Biphenyls: Convergent Construction of Functionalized Fused Helicenes. Angewandte Chemie, 2016, 128, 12233-12237.	1.6	23
77	Double C–H amination by consecutive SET oxidations. Chemical Communications, 2016, 52, 7138-7141.	2.2	35
78	Combining Traceless Directing Groups with Hybridization Control of Radical Reactivity: From Skipped Enynes to Defectâ€Free Hexagonal Frameworks. Angewandte Chemie, 2016, 128, 11805-11809.	1.6	10
79	Combining Traceless Directing Groups with Hybridization Control of Radical Reactivity: From Skipped Enynes to Defectâ€Free Hexagonal Frameworks. Angewandte Chemie - International Edition, 2016, 55, 11633-11637.	7.2	32
80	Alkynes as Linchpins for the Additive Annulation of Biphenyls: Convergent Construction of Functionalized Fused Helicenes. Angewandte Chemie - International Edition, 2016, 55, 12054-12058.	7.2	62
81	Optimizing Protonation States for Selective Double-Strand DNA Photocleavage in Hypoxic Tumors: pH-Gated Transitions of Lysine Dipeptides. Journal of Medicinal Chemistry, 2016, 59, 8634-8647.	2.9	8
82	Orbital Crossings Activated through Electron Injection: Opening Communication between Orthogonal Orbitals in Anionic C1–C5 Cyclizations of Enediynes. Journal of the American Chemical Society, 2016, 138, 15617-15628.	6.6	38
83	Domino Fragmentations in Traceless Directing Groups of Radical Cascades: Evidence for the Formation of Alkoxy Radicals via C–O Scission. Journal of Organic Chemistry, 2016, 81, 6007-6017.	1.7	44
84	Fused Catechol Ethers from Gold(I)-Catalyzed Intramolecular Reaction of Propargyl Ethers with Acetals. Organic Letters, 2016, 18, 928-931.	2.4	14
85	Gold(I)-Catalyzed Allenyl Cope Rearrangement: Evolution from Asynchronicity to Trappable Intermediates Assisted by Stereoelectronic Switching. Journal of the American Chemical Society, 2016, 138, 2769-2779.	6.6	46
86	Oxidized Derivatives of n-Hexane from a Water/Argon Continuous Flow Electrical Discharge Plasma Reactor. Plasma Chemistry and Plasma Processing, 2016, 36, 553-584.	1.1	15
87	Opening Enediyne Scissors Wider: <scp>pH</scp> â€Dependent DNA Photocleavage by <i>meta</i> â€Diyne Lysine Conjugates. Photochemistry and Photobiology, 2015, 91, 748-758.	1.3	8
88	Conformational Flexibility of Fused Tetracenedione Propellers Obtained from One-Pot Reductive Dimerization of Acetylenic Quinones. Journal of Organic Chemistry, 2015, 80, 1618-1631.	1.7	15
89	UV and Sunlight Driven Photoligation of Quantum Dots: Understanding the Photochemical Transformation of the Ligands. Journal of the American Chemical Society, 2015, 137, 2704-2714.	6.6	45
90	Synthesis of Functionalized Phenanthrenes via Regioselective Oxidative Radical Cyclization. Journal of Organic Chemistry, 2015, 80, 11706-11717.	1.7	59

#	Article	IF	CITATIONS
91	Coupling cyclizations with fragmentations for the preparation of heteroaromatics: quinolines from o-alkenyl arylisocyanides and boronic acids. Chemical Communications, 2015, 51, 12831-12834.	2.2	50
92	Alkenes as Alkyne Equivalents in Radical Cascades Terminated by Fragmentations: Overcoming Stereoelectronic Restrictions on Ring Expansions for the Preparation of Expanded Polyaromatics. Journal of the American Chemical Society, 2015, 137, 6335-6349.	6.6	88
93	The Missing C ₁ –C ₅ Cycloaromatization Reaction: Triplet State Antiaromaticity Relief and Self-Terminating Photorelease of Formaldehyde for Synthesis of Fulvenes from Enynes. Journal of the American Chemical Society, 2015, 137, 15441-15450.	6.6	67
94	Reaction of α,β-alkynylketones with β-amino alcohols: pseudoephedrine- assisted cleavage of triple bond via formal internal redox process. Mendeleev Communications, 2015, 25, 377-379.	0.6	5
95	Stereoelectronic source of the anomalous stability of bis-peroxides. Chemical Science, 2015, 6, 6783-6791.	3.7	79
96	Traceless Directing Groups in Radical Cascades: From Oligoalkynes to Fused Helicenes without Tethered Initiators. Journal of the American Chemical Society, 2015, 137, 1165-1180.	6.6	94
97	Orbital hybridization: a key electronic factor in control of structure and reactivity. Journal of Physical Organic Chemistry, 2015, 28, 147-162.	0.9	109
98	Organic synthesis with continuous flow water film pulsed plasma discharge. , 2014, , .		1
99	A CO ₂ Cloak for the Cyanide Dagger. Science, 2014, 344, 45-46.	6.0	9
100	Formation of Alcohols and Carbonyl Compounds From Hexane and Cyclohexane With Water in a Liquid Film Plasma Reactor. IEEE Transactions on Plasma Science, 2014, 42, 1195-1205.	0.6	25
101	<i>Exo</i> â€ <i>Dig</i> Radical Cascades of Skipped Enediynes: Building a Naphthalene Moiety within a Polycyclic Framework. Chemistry - A European Journal, 2014, 20, 390-393.	1.7	27
102	Rh(I)-Catalyzed Transformation of Propargyl Vinyl Ethers into (<i>E</i> , <i>Z</i>)-Dienals: Stereoelectronic Role of <i>trans</i> Effect in a Metal-Mediated Pericyclic Process and a Shift from Homogeneous to Heterogeneous Catalysis During a One-Pot Reaction. Journal of Organic Chemistry, 2014, 79, 352-364.	1.7	29
103	Rerouting Radical Cascades: Intercepting the Homoallyl Ring Expansion in Enyne Cyclizations via C–S Scission. Journal of Organic Chemistry, 2014, 79, 7491-7501.	1.7	30
104	Hybridization Trends for Main Group Elements and Expanding the Bent's Rule Beyond Carbon: More than Electronegativity. Journal of Physical Chemistry A, 2014, 118, 3663-3677.	1.1	86
105	Alkynyl Crown Ethers as a Scaffold for Hyperconjugative Assistance in Noncatalyzed Azide–Alkyne Click Reactions: Ion Sensing through Enhanced Transition-State Stabilization. Journal of Organic Chemistry, 2014, 79, 6221-6232.	1.7	30
106	Synthesis of Substituted Biaryls through Goldâ€Catalyzed Petasis–Ferrier Rearrangement of Propargyl Ethers. European Journal of Organic Chemistry, 2014, 2014, 3986-3990.	1.2	12
107	Design of Leaving Groups in Radical CC Fragmentations: Throughâ€Bond 2c–3e Interactions in Selfâ€Terminating Radical Cascades. Chemistry - A European Journal, 2014, 20, 8664-8669.	1.7	64
108	Click chemistry on diterpenes: anti-inflammatory activity of the acetylenic derivatives of levopimaric acid and products of their transformations. Arkivoc, 2014, 2014, 145-157.	0.3	6

#	Article	IF	CITATIONS
109	"Two Functional Groups in One Packageâ€: Using Both Alkyne Ï€-Bonds in Cascade Transformations. Journal of Organic Chemistry, 2013, 78, 7777-7784.	1.7	100
110	Stereocontrolled Synthesis of (E,Z)-Dienals via Tandem Rh(I)-Catalyzed Rearrangement of Propargyl Vinyl Ethers. Organic Letters, 2013, 15, 4462-4465.	2.4	30
111	Finding the right path: Baldwin "Rules for Ring Closure―and stereoelectronic control of cyclizations. Chemical Communications, 2013, 49, 11246.	2.2	142
112	Divergent Cyclizations of 1-R-Ethynyl-9,10-anthraquinones: Use of Thiourea as a "S ^{2–} ― Equivalent in an "Anchor-Relay―Addition Mediated by Formal C–H Activation. Journal of Organic Chemistry, 2013, 78, 2074-2082.	1.7	33
113	Cold(I)-Catalyzed Claisen Rearrangement of Allenyl Vinyl Ethers: Missing Transition States Revealed through Evolution of Aromaticity, Au(I) as an Oxophilic Lewis Acid, and Lower Energy Barriers from a High Energy Complex. Journal of Organic Chemistry, 2013, 78, 2059-2073.	1.7	46
114	Overriding the alkynophilicity of gold: catalytic pathways from higher energy Au(i)–substrate complexes and reactant deactivation via unproductive complexation in the gold(i)-catalyzed propargyl Claisen rearrangement. Organic and Biomolecular Chemistry, 2013, 11, 1624.	1.5	23
115	Combining Ligand Design with Photoligation to Provide Compact, Colloidally Stable, and Easy to Conjugate Quantum Dots. ACS Applied Materials & Interfaces, 2013, 5, 2861-2869.	4.0	42
116	How to Lose a Bond in Two Ways ― The Diradical/Zwitterion Dichotomy in Cycloaromatization Reactions. European Journal of Organic Chemistry, 2013, 2013, 2505-2527.	1.2	86
117	Convenient Ambient Temperature Generation of Sulfonyl Radicals. Australian Journal of Chemistry, 2013, 66, 336.	0.5	22
118	Reinvestigation of "Singleâ€Crystal Xâ€ray Structure of 1,3â€dimethylcyclobutadieneâ€: Chemistry - A European Journal, 2013, 19, 4942-4945.	1.7	5
119	Concerted Reactions That Produce Diradicals and Zwitterions: Electronic, Steric, Conformational, and Kinetic Control of Cycloaromatization Processes. Chemical Reviews, 2013, 113, 7089-7129.	23.0	184
120	"Stereoelectronic Umpolungâ€: Converting a p-Donor into a σ-Acceptor via Electron Injection and a Conformational Change. Organic Letters, 2013, 15, 2238-2241.	2.4	25
121	Moderating Strain without Sacrificing Reactivity: Design of Fast and Tunable Noncatalyzed Alkyne–Azide Cycloadditions via Stereoelectronically Controlled Transition State Stabilization. Journal of the American Chemical Society, 2013, 135, 1558-1569.	6.6	120
122	Drawing from a Pool of Radicals for the Design of Selective Enyne Cyclizations. Organic Letters, 2013, 15, 5650-5653.	2.4	53
123	Chemical reactions in pulsed plasma with organic liquid spray. , 2013, , .		1
124	Tandem Nucleophilic Addition/Fragmentation of Vinylogous Acyl Nonaflates for the Synthesis of Functionalized Alkynes, with New Mechanistic Insight. Synthesis, 2012, 44, 1818-1824.	1.2	13
125	Photochemical Bergman Cyclization and Related Photoreactions of Enediynes. , 2012, , 549-592.		2
126	Hybrids of amino acids and acetylenic DNA-photocleavers: optimising efficiency and selectivity for cancer phototherapy. Organic and Biomolecular Chemistry, 2012, 10, 3974.	1.5	66

#	Article	IF	CITATIONS
127	Polyaromatic Ribbon/Benzofuran Fusion via Consecutive Endo Cyclizations of Enediynes. Organic Letters, 2012, 14, 6032-6035.	2.4	91
128	Aromatic Transition States in Nonpericyclic Reactions: Anionic 5-Endo Cyclizations Are Aborted Sigmatropic Shifts. Journal of the American Chemical Society, 2012, 134, 10584-10594.	6.6	78
129	Photoinduced Phase Transfer of Luminescent Quantum Dots to Polar and Aqueous Media. Journal of the American Chemical Society, 2012, 134, 16370-16378.	6.6	102
130	Polyaromatic Ribbons from Oligo-Alkynes via Selective Radical Cascade: Stitching Aromatic Rings with Polyacetylene Bridges. Journal of the American Chemical Society, 2012, 134, 9609-9614.	6.6	72
131	Strain control in nucleophilic cyclizations: reversal of <i>exo</i> â€selectivity in cyclizations of hydrazides of acetylenyl carboxylic acids by annealing to a pyrazole scaffold. Journal of Physical Organic Chemistry, 2012, 25, 998-1005.	0.9	25
132	Selective Transition State Stabilization via Hyperconjugative and Conjugative Assistance: Stereoelectronic Concept for Copper-Free Click Chemistry. Journal of Organic Chemistry, 2012, 77, 75-89.	1.7	107
133	Strain-Promoted Azide–Alkyne Cycloadditions of Benzocyclononynes. Journal of Organic Chemistry, 2012, 77, 2093-2097.	1.7	47
134	Dissecting Alkynes: Full Cleavage of Polarized C≡C Moiety via Sequential Bis-Michael Addition/Retro-Mannich Cascade. Journal of Organic Chemistry, 2011, 76, 7482-7490.	1.7	56
135	Urea as an organic solvent and reagent for the addition/cyclization/fragmentation cascades leading to 2-R-7H-dibenzo[de,h]quinolin-7-one analogues of Aporphinoid alkaloids. RSC Advances, 2011, 1, 1745.	1.7	19
136	Chameleonic Reactivity of Vicinal Diazonium Salt of Acetylenyl-9,10-anthraquinones: Synthetic Application toward Two Heterocyclic Targets. Journal of Organic Chemistry, 2011, 76, 8737-8748.	1.7	21
137	Engineering pH-Gated Transitions for Selective and Efficient Double-Strand DNA Photocleavage in Hypoxic Tumors. Journal of Medicinal Chemistry, 2011, 54, 8501-8516.	2.9	32
138	Rules for Anionic and Radical Ring Closure of Alkynes. Journal of the American Chemical Society, 2011, 133, 12608-12623.	6.6	143
139	Radical O→C Transposition: A Metal-Free Process for Conversion of Phenols into Benzoates and Benzamides. Journal of Organic Chemistry, 2011, 76, 1521-1537.	1.7	47
140	Fine-tuning alkyne cycloadditions: Insights into photochemistry responsible for the double-strand DNA cleavage via structural perturbations in diaryl alkyne conjugates. Beilstein Journal of Organic Chemistry, 2011, 7, 813-823.	1.3	18
141	Cyclizations of Alkynes: Revisiting Baldwin's Rules for Ring Closure. Chemical Reviews, 2011, 111, 6513-6556.	23.0	448
142	Hyperconjugation. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011, 1, 109-141.	6.2	267
143	Rapid access to new bioconjugates of betulonic acid via click chemistry. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 62-65.	1.0	45
144	Radical 1,2â€O→C Transposition for Conversion of Phenols into Benzoates by Oâ€Neophyl Rearrangement/Fragmentation Cascade. Chemistry - A European Journal, 2010, 16, 7683-7687.	1.7	24

#	Article	IF	CITATIONS
145	Metalâ€Free Transformation of Phenols into Substituted Benzamides: A Highly Selective Radical 1,2â€O→C Transposition in <i>O</i> â€Arylâ€ <i>N</i> â€phenylthiocarbamates. Chemistry - A European Journal, 2010, 16, 12316-12320.	1.7	29
146	Intracellular DNA Damage by Lysine-Acetylene Conjugates. Journal of Nucleic Acids, 2010, 2010, 1-6.	0.8	10
147	Conformationally Gated Fragmentations and Rearrangements Promoted by Interception of the Bergman Cyclization through Intramolecular H-Abstraction: A Possible Mechanism of Auto-Resistance to Natural Enediyne Antibiotics?. Journal of the American Chemical Society, 2010, 132, 967-979.	6.6	60
148	Single Molecule Conductance of Bipyridyl Ethynes: The Role of Surface Binding Modesâ€. Journal of Physical Chemistry B, 2010, 114, 14189-14193.	1.2	5
149	Comment on "Single-Crystal X-ray Structure of 1,3-Dimethylcyclobutadiene by Confinement in a Crystalline Matrix― Science, 2010, 330, 1047-1047.	6.0	33
150	Fast Oxy-Cope Rearrangements of Bis-alkynes: Competition with Central Câ^'C Bond Fragmentation and Incorporation in Tunable Cascades Diverging from a Common Bis-allenic Intermediate. Journal of Organic Chemistry, 2010, 75, 8689-8692.	1.7	34
151	Synthesis of the first acetylene derivatives of betulonic acid. Doklady Chemistry, 2009, 424, 39-42.	0.2	1
152	Efficient synthesis of the first betulonic acid–acetylene hybrids and their hepatoprotective and anti-inflammatory activity. Bioorganic and Medicinal Chemistry, 2009, 17, 5164-5169.	1.4	46
153	An Unexpected Rearrangement That Disassembles Alkyne Moiety Through Formal Nitrogen Atom Insertion between Two Acetylenic Carbons and Related Cascade Transformations: New Approach to <i>Sampangine</i> Derivatives and Polycyclic Aromatic Amides. Journal of Organic Chemistry, 2009, 74, 6143-6150.	1.7	42
154	Tuning Selectivity of Anionic Cyclizations: Competition between 5-Exo and 6-Endo-Dig Closures of Hydrazides of o-Acetylenyl Benzoic Acids and Based-Catalyzed Fragmentation/Recyclization of the Initial 5-Exo-Dig Products. Journal of Organic Chemistry, 2009, 74, 8106-8117.	1.7	66
155	C-Lysine Conjugates: pH-Controlled Light-Activated Reagents for Efficient Double-Stranded DNA Cleavage with Implications for Cancer Therapy. Journal of the American Chemical Society, 2009, 131, 11458-11470.	6.6	61
156	Synthetic and mechanistic aspects of cross-coupling of nitroxyl radicals of 3-imidazoline series with terminal alkynes. Tetrahedron, 2008, 64, 8807-8814.	1.0	4
157	In Search of Efficient 5-Endo-dig Cyclization of a Carbon-Centered Radical: 40 Years from a Prediction to Another Success for the Baldwin Rules. Journal of the American Chemical Society, 2008, 130, 10984-10995.	6.6	67
158	Radical Cascade Transformations of Tris(<i>o</i> -aryleneethynylenes) into Substituted Benzo[<i>a</i>]indeno[2,1- <i>c</i>]fluorenes. Journal of the American Chemical Society, 2008, 130, 11535-11545.	6.6	90
159	DNA damage-site recognition by lysine conjugates. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13016-13021.	3.3	30
160	Chapter 7.2. Organochalcogen Multication Species. , 2007, , 417-453.		1
161	Rehybridization as a general mechanism for maximizing chemical and supramolecular bonding and a driving force for chemical reactions. Journal of Computational Chemistry, 2007, 28, 373-390.	1.5	71
162	Unmasking of aminoanthroquinone moiety through a ring opening in the presence of copper salts and a subsequent cross-coupling/recyclization cascade. Tetrahedron Letters, 2007, 48, 1867-1870.	0.7	11

#	Article	IF	CITATIONS
163	Oxidative coupling of alkynes mediated by nitroxyl radicals under Sonogashira conditions and Pd-free catalytic approach to stable radicals of 3-imidazoline family with triple bonds. Tetrahedron Letters, 2007, 48, 8246-8249.	0.7	8
164	Substituted anilines: The tug-of-war between pyramidalization and resonance inside and outside of crystal cavities. Computational and Theoretical Chemistry, 2007, 813, 21-27.	1.5	39
165	Cycloaromatization reactions: the testing ground for theory and experiment. Advances in Physical Organic Chemistry, 2007, , 1-33.	0.5	16
166	Ortho Effect in the Bergman Cyclization:Â Interception ofp-Benzyne Intermediate by Intramolecular Hydrogen Abstraction. Journal of Organic Chemistry, 2006, 71, 954-961.	1.7	55
167	Ortho Effect in the Bergman Cyclization:  Electronic and Steric Effects in Hydrogen Abstraction by 1-Substituted Naphthalene 5,8-Diradicals. Journal of Physical Chemistry A, 2006, 110, 2517-2526.	1.1	48
168	Ortho Effect in the Bergman Cyclization:Â Comparison of Experimental Approaches and Dissection of Cycloaromatization Kinetics. Journal of Organic Chemistry, 2006, 71, 962-975.	1.7	77
169	Two-Photon Excitation of Substituted Enediynes. Journal of Physical Chemistry A, 2006, 110, 241-251.	1.1	44
170	Protected32P-Labels in Deoxyribonucleotides: Investigation of Sequence Selectivity of DNA Photocleavage by Enediyne–, Fulvene–, and Acetylene–Lysine Conjugates. Angewandte Chemie - International Edition, 2006, 45, 3666-3670.	7.2	42
171	Triplet Acetylenes as Synthetic Equivalents of 1,2-Bicarbenes, Part II: New Supramolecular Scaffolds from Photochemical Cycloaddition of Diarylacetylenes to 1,4-Cyclohexadienes. Chemistry - A European Journal, 2005, 11, 4953-4960.	1.7	14
172	Triplet Acetylenes as Synthetic Equivalents of 1,2-Bicarbenes:Â Phantom n,Ï€* State Controls Reactivity in Triplet Photocycloaddition. Journal of the American Chemical Society, 2005, 127, 4270-4285.	6.6	75
173	Synthesis of selectively deuterated fulvenes and indenes from enediynes. Organic and Biomolecular Chemistry, 2005, 3, 218.	1.5	60
174	Lysine–enediyne conjugates as photochemically triggered DNA double-strand cleavage agents. Chemical Communications, 2005, , 1444-1446.	2.2	59
175	Thermodynamic and Strain Effects in the Competition between 5-Exo-dig and 6-Endo-dig Cyclizations of Vinyl and Aryl Radicals. Journal of the American Chemical Society, 2005, 127, 12583-12594.	6.6	88
176	5-Endo-Dig Radical Cyclizations: "The Poor Cousins―of the Radical Cyclizations Family. Journal of the American Chemical Society, 2005, 127, 9534-9545.	6.6	66
177	5-Exo-dig Radical Cyclization of Enediynes: The First Synthesis of Tin-Substituted Benzofulvenes ChemInform, 2004, 35, no.	0.1	Ο
178	5-Exo-dig Radical Cyclization of Enediynes:  The First Synthesis of Tin-Substituted Benzofulvenes. Organic Letters, 2004, 6, 2457-2460.	2.4	107
179	Effect of Double-Hyperconjugation on the Apparent Donor Ability of σ-Bonds: Insights from the Relative Stability of Ĩ´-Substituted Cyclohexyl Cations. Journal of Organic Chemistry, 2004, 69, 9011-9024.	1.7	83
180	Blue-Shifted and Red-Shifted Hydrogen Bonds in Hypervalent Rare-Gas FRgâ^'H···Y Sandwiches. Journal of Physical Chemistry A, 2004, 108, 4720-4730.	1.1	70

#	Article	IF	CITATIONS
181	1,2-Dications in Organic Main Group Systems. ChemInform, 2003, 34, no.	0.1	0
182	Homoanomeric Effects in Six-Membered Heterocycles. Journal of the American Chemical Society, 2003, 125, 14014-14031.	6.6	134
183	1,2-Dications in Organic Main Group Systems. Chemical Reviews, 2003, 103, 229-282.	23.0	114
184	Control of Kinetics and Thermodynamics of [1,5]-Shifts by Aromaticity:Â A View through the Prism of Marcus Theory. Journal of the American Chemical Society, 2003, 125, 9329-9342.	6.6	131
185	Reactant Destabilization in the Bergman Cyclization and Rational Design of Light- and pH-Activated Enediynesâ€. Journal of Physical Chemistry A, 2003, 107, 3363-3371.	1.1	100
186	Radical-Anionic Cyclizations of Enediynes:  Remarkable Effects of Benzannelation and Remote Substituents on Cyclorearomatization Reactions. Journal of the American Chemical Society, 2003, 125, 4495-4509.	6.6	89
187	Electronic Basis of Improper Hydrogen Bonding:Â A Subtle Balance of Hyperconjugation and Rehybridization. Journal of the American Chemical Society, 2003, 125, 5973-5987.	6.6	700
188	C1â^'C5 Photochemical Cyclization of Enediynes. Journal of the American Chemical Society, 2002, 124, 9052-9053.	6.6	84
189	Tuning Rate of the Bergman Cyclization of Benzannelated Enediynes with Ortho Substituents. Organic Letters, 2002, 4, 1119-1122.	2.4	98
190	Stereoelectronic Effects and General Trends in Hyperconjugative Acceptor Ability of i_f Bonds. Journal of the American Chemical Society, 2002, 124, 3175-3185.	6.6	268
191	Energy Distribution and Redistribution and Chemical Reactivity. The Generalized Delta Overlap-Density Method for Ground State and Electron Transfer Reactions:Â A New Quantitative Counterpart of Electron-Pushing1. Journal of the American Chemical Society, 2001, 123, 2265-2270.	6.6	12
192	Experimental and Theoretical Host–Guest Photochemistry; Control of Reactivity with Host Variation and Theoretical Treatment With a Stress Shaped Reaction Cavity; Mechanistic and Exploratory Organic Photochemistry 1,2. Tetrahedron, 2000, 56, 6821-6831.	1.0	23
193	Stereoelectronic Interactions in Cyclohexane, 1,3-Dioxane, 1,3-Oxathiane, and 1,3-Dithiane: W-Effect, ÏfC-X↔ Ïf*C-HInteractions, Anomeric EffectWhat Is Really Important?. Journal of Organic Chemistry, 2000, 65, 3910-3919.	1.7	210
194	Excited State Energy Distribution and Redistribution and Chemical Reactivity; Mechanistic and Exploratory Organic Photochemistry1,2. Journal of the American Chemical Society, 2000, 122, 952-953.	6.6	15
195	Dramatic Effects of Crystal Morphology on Solid State Reaction Course;1Control by Crystal Disorder; Mechanistic and Exploratory Organic Photochemistry. Journal of the American Chemical Society, 1999, 121, 11930-11931.	6.6	25
196	Phosphorylated allenes: structure and interaction with electrophiles. Russian Chemical Reviews, 1997, 66, 205-224.	2.5	46
197	Oxidative Properties of Triflic Anhydride. Oxidation of Alcohols and Sulfides. Journal of Organic Chemistry, 1997, 62, 2483-2486.	1.7	29
198	SO3-Mediated reaction of phenylselenenylamide with 1,2-alkadienylphosphonates. Russian Chemical Bulletin, 1996, 45, 739-740.	0.4	1

#	Article	IF	CITATIONS
199	ALKENYLSULFENYLCHLORIDES. II. INTERACTION OF $\hat{1}^3$, $\hat{1}^3$ -DISUBSTITUTED PHOSPHORUS-CONTAINING ALLENES WITH SULFUR DICHLORIDE. Phosphorus, Sulfur and Silicon and the Related Elements, 1996, 119, 61-75.	0.8	4
200	Alkenylsulfenylchlorides : Synthesis and AdE reactions of	0.7	12

Alkenylsulfenylchlorides : Synthesis and AdE reactions of 2-alkoxy-2-oxo-3-R-4-chlorothio-1,2-oxaphosphol-3-enes. Tetrahedron Letters, 1994, 35, 8275-8278. 200