Jean-Michel Bellanger

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2054652/jean-michel-bellanger-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

33	959	15	30
papers	citations	h-index	g-index
34	1,131 ext. citations	4.7	3.48
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
33	Has taxonomic vandalism gone too far? A case study, the rise of the pay-to-publish model and the pitfalls of Morchella systematics. <i>Mycological Progress</i> , 2022 , 21, 7-38	1.9	O
32	Screening for Antibacterial Activity of French Mushrooms against Pathogenic and Multidrug Resistant Bacteria. <i>Applied Sciences (Switzerland)</i> , 2022 , 12, 5229	2.6	1
31	Amanita Section Phalloideae Species in the Mediterranean Basin: Destroying Angels Reviewed. <i>Biology</i> , 2022 , 11, 770	4.9	
30	Extended phylogeography of the ancestral supports preglacial presence in Europe and Mediterranean origin of morels. <i>Mycologia</i> , 2021 , 113, 559-573	2.4	1
29	Present status and future of boletoid fungi (Boletaceae) on the island of Cyprus: Cryptic and threatened diversity unravelled by ten-year study. <i>Fungal Ecology</i> , 2019 , 41, 65-81	4.1	5
28	Phylogenetic and distributional data on boletoid fungi (Boletaceae) in Cyprus and description of a new sampling methodology. <i>Data in Brief</i> , 2019 , 25, 104115	1.2	
27	Host effects in high ectomycorrhizal diversity tropical rainforests on ultramafic soils in New Caledonia. <i>Fungal Ecology</i> , 2019 , 39, 201-212	4.1	12
26	Hidden diversity uncovered in Hygrophorus sect. Aurei (Hygrophoraceae), including the Mediterranean H. meridionalis and the North American H. boyeri, spp. nov. <i>Fungal Biology</i> , 2018 , 122, 817-836	2.8	7
25	Considerations and consequences of allowing DNA sequence data as types of fungal taxa. <i>IMA Fungus</i> , 2018 , 9, 167-175	6.8	27
24	Fungal Planet description sheets: 716-784. <i>Persoonia: Molecular Phylogeny and Evolution of Fungi</i> , 2018 , 40, 240-393	9	82
23	Diversity of (,) in Europe, and typification of. <i>IMA Fungus</i> , 2018 , 9, 271-290	6.8	6
22	Morphogenetic diversity of the ectomycorrhizal genus Cortinarius section Calochroi in the Iberian Peninsula. <i>Mycological Progress</i> , 2018 , 17, 815-831	1.9	1
21	Diversity of foliar endophytic ascomycetes in the endemic Corsican pine forests. <i>Fungal Ecology</i> , 2018 , 36, 128-140	4.1	12
20	Xylobolus subpileatus, a specialized basidiomycete functionally linked to old canopy gaps. <i>Canadian Journal of Forest Research</i> , 2017 , 47, 965-973	1.9	3
19	section and section (,), a morphogenetic overview of European and North American species. <i>Persoonia: Molecular Phylogeny and Evolution of Fungi</i> , 2017 , 39, 175-200	9	10
18	The genus (): a ribosomal DNA-based phylogeny and revised systematics of European 'deer truffles'. <i>Persoonia: Molecular Phylogeny and Evolution of Fungi</i> , 2017 , 38, 197-239	9	18
17	Combined phylogenetic and morphological studies of true morels (Pezizales, Ascomycota) in Cyprus reveal significant diversity, including Morchella arbutiphila and M. disparilis spp. nov <i>Mycological Progress</i> , 2016 , 15, 1	1.9	19

LIST OF PUBLICATIONS

Beyond ectomycorrhizal bipartite networks: projected networks demonstrate contrasted patterns between early- and late-successional plants in Corsica. <i>Frontiers in Plant Science</i> , 2015 , 6, 881	6.2	15
The RhoGEF DOCK10 is essential for dendritic spine morphogenesis. <i>Molecular Biology of the Cell</i> , 2015 , 26, 2112-27	3.5	25
True morels (Morchella, Pezizales) of Europe and North America: evolutionary relationships inferred from multilocus data and a unified taxonomy. <i>Mycologia</i> , 2015 , 107, 359-82	2.4	62
Plunging hands into the mushroom jar: a phylogenetic framework for Lyophyllaceae (Agaricales, Basidiomycota). <i>Genetica</i> , 2015 , 143, 169-94	1.5	35
(2289) Proposal to conserve the name Morchella semilibera against Phallus crassipes, P. gigas and P. undosus (Ascomycota). <i>Taxon</i> , 2014 , 63, 677-678	0.8	5
The doublecortin-related gene zyg-8 is a microtubule organizer in Caenorhabditis elegans neurons. <i>Journal of Cell Science</i> , 2012 , 125, 5417-27	5.3	9
Redflouverte et Typification des Champignons de la Rfgion de Montpellier Illustr¶ par Michel-F[]x Dunal et Alire Raffeneau-Delile. <i>Cryptogamie, Mycologie</i> , 2011 , 32, 255-276	1.4	6
ZYG-9, TAC-1 and ZYG-8 together ensure correct microtubule function throughout the cell cycle of C. elegans embryos. <i>Journal of Cell Science</i> , 2007 , 120, 2963-73	5.3	20
TAC-1 and ZYG-9 form a complex that promotes microtubule assembly in C. elegans embryos. <i>Current Biology</i> , 2003 , 13, 1488-98	6.3	121
Different regulation of the Trio Dbl-Homology domains by their associated PH domains. <i>Biology of the Cell</i> , 2003 , 95, 625-34	3.5	29
zyg-8, a gene required for spindle positioning in C. elegans, encodes a doublecortin-related kinase that promotes microtubule assembly. <i>Developmental Cell</i> , 2001 , 1, 363-75	10.2	80
Trio : Un facteur dthange des GTPases Rho aux multiples facettes impliquthans le guidage axonal. <i>Medecine/Sciences</i> , 2001 , 17, 1316-1321		
The Rac1- and RhoG-specific GEF domain of Trio targets filamin to remodel cytoskeletal actin. <i>Nature Cell Biology</i> , 2000 , 2, 888-92	23.4	188
Differential effect of Rac and Cdc42 on p38 kinase activity and cell cycle progression of nonadherent primary mouse fibroblasts. <i>Journal of Biological Chemistry</i> , 2000 , 275, 5911-7	5.4	43
The two guanine nucleotide exchange factor domains of Trio link the Rac1 and the RhoA pathways in vivo. <i>Oncogene</i> , 1998 , 16, 147-52	9.2	114
Assignment of TRIO, the Trio gene (PTPRF interacting) to human chromosome bands 5p 15.1>p 14 by in situ hybridization. <i>Cytogenetic and Genome Research</i> , 1997 , 76, 107-8	1.9	3
	between early- and late-successional plants in Corsica. Frontiers in Plant Science, 2015, 6, 881 The RhoGEF DOCK10 is essential for dendritic spine morphogenesis. Molecular Biology of the Cell, 2015, 26, 2112-27 True morels (Morchella, Pezizales) of Europe and North America: evolutionary relationships inferred from multilocus data and a unified taxonomy. Mycologia, 2015, 107, 359-82 Plunging hands into the mushroom jar: a phylogenetic framework for Lyophyllaceae (Agaricales, Basidiomycota). Genetica, 2015, 143, 169-94 (2289) Proposal to conserve the name Morchella semilibera against Phallus crassipes, P. gigas and P. undosus (Ascomycota). Taxon, 2014, 63, 677-678 The doublecortin-related gene zyg-8 is a microtubule organizer in Caenorhabditis elegans neurons. Journal of Cell Science, 2012, 125, 5417-27 Reddiouverte et Typification des Champignons de la Rijion de Montpellier Illustris par Michel-Flix Dunal et Alire Raffeneau-Delile. Cryptogamie, Mycologie, 2011, 32, 255-276 ZYG-9, TAC-1 and ZYG-8 together ensure correct microtubule function throughout the cell cycle of C. elegans embryos. Journal of Cell Science, 2007, 120, 2963-73 TAC-1 and ZYG-9 form a complex that promotes microtubule assembly in C. elegans embryos. Current Biology, 2003, 13, 1488-98 Different regulation of the Trio Dbl-Homology domains by their associated PH domains. Biology of the Cell, 2003, 95, 625-34 zyg-8, a gene required for spindle positioning in C. elegans, encodes a doublecortin-related kinase that promotes microtubule assembly. Developmental Cell, 2001, 1, 363-75 Trio: Un facteur dBhange des GTPases Rho aux multiples facettes impliquídans le guidage axonal. Medecine/Sciences, 2001, 17, 1316-1321 The Rac1- and RhoG-specific GEF domain of Trio targets filamin to remodel cytoskeletal actin. Nature Cell Biology, 2000, 2, 888-92 Differential effect of Rac and Cdc42 on p38 kinase activity and cell cycle progression of nonadherent primary mouse fibroblasts. Journal of Biological Chemistry, 2000, 275, 5911-7 The two guanine n	between early- and late-successional plants in Corsica. Frontiers in Plant Science, 2015, 6, 881 The RhoGEF DOCK10 is essential for dendritic spine morphogenesis. Molecular Biology of the Cell, 2015, 26, 2112-27 True morels (Morchella, Pezizales) of Europe and North America: evolutionary relationships inferred from multilocus data and a unified taxonomy. Mycologia, 2015, 107, 359-82 Plunging hands into the mushroom jar: a phylogenetic framework for Lyophyllaceae (Agaricales, Basidiomycota). Genetica, 2015, 143, 169-94 (2289) Proposal to conserve the name Morchella semilibera against Phallus crassipes, P. gigas and P. undosus (Ascomycota). Taxon, 2014, 63, 677-678 The doublecortin-related gene zyg-8 is a microtubule organizer in Caenorhabditis elegans neurons. Journal of Cell Science, 2012, 125, 5417-27 RedBouverte et Typification des Champignons de la RBion de Montpellier IllustrB par Michel-Flix Dunal et Alire Raffeneau-Deille. Cryptogamie, Mycologie, 2011, 32, 255-276 1-4 ZYG-9, TAC-1 and ZYG-8 together ensure correct microtubule function throughout the cell cycle of C. elegans embryos. Journal of Cell Science, 2007, 120, 2963-73 TAC-1 and ZYG-9 form a complex that promotes microtubule assembly in C. elegans embryos. Current Biology, 2003, 13, 1488-98 Different regulation of the Trio Dbl-Homology domains by their associated PH domains. Biology of the Cell, 2003, 95, 625-34 zyg-8, a gene required for spindle positioning in C. elegans, encodes a doublecortin-related kinase that promotes microtubule assembly. Developmental Cell, 2001, 1, 363-75 Trio: Un facteur dBhange des CTPases Rho aux multiples facettes impliquidans le guidage axonal. Medecine/Sciences, 2001, 17, 1316-1321 The Rac1- and RhoG-specific GEF domain of Trio targets filamin to remodel cytoskeletal actin. Nature Cell Biology, 2000, 2, 888-92 Differential effect of Rac and Cdc42 on p38 kinase activity and cell cycle progression of nonadherent primary mouse fibroblasts. Journal of Biological Chemistry, 2000, 275, 5911-7 The two guanine