
AleÅ; PanÃ;Äek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/205464/publications.pdf Version: 2024-02-01

Δι ε Δ : ΡΛΝΑ : Δεκ

#	Article	IF	CITATIONS
1	Silver Colloid Nanoparticles:Â Synthesis, Characterization, and Their Antibacterial Activity. Journal of Physical Chemistry B, 2006, 110, 16248-16253.	2.6	2,012
2	Bacterial resistance to silver nanoparticles and how to overcome it. Nature Nanotechnology, 2018, 13, 65-71.	31.5	671
3	Simple size-controlled synthesis of Au nanoparticles and their size-dependent catalytic activity. Scientific Reports, 2018, 8, 4589.	3.3	281
4	The influence of complexing agent concentration on particle size in the process of SERS active silver colloid synthesis. Journal of Materials Chemistry, 2005, 15, 1099-1105.	6.7	154
5	Acute and Chronic Toxicity Effects of Silver Nanoparticles (NPs) on <i>Drosophila melanogaster</i> . Environmental Science & Technology, 2011, 45, 4974-4979.	10.0	147
6	Silver nanoparticles strongly enhance and restore bactericidal activity of inactive antibiotics against multiresistant Enterobacteriaceae. Colloids and Surfaces B: Biointerfaces, 2016, 142, 392-399.	5.0	131
7	Strong and Nonspecific Synergistic Antibacterial Efficiency of Antibiotics Combined with Silver Nanoparticles at Very Low Concentrations Showing No Cytotoxic Effect. Molecules, 2016, 21, 26.	3.8	121
8	Chitosan-based synthesis of magnetically-driven nanocomposites with biogenic magnetite core, controlled silver size, and high antimicrobial activity. Green Chemistry, 2012, 14, 2550.	9.0	87
9	Enhanced antibacterial effect of antibiotics in combination with silver nanoparticles against animal pathogens. Veterinary Journal, 2016, 209, 174-179.	1.7	87
10	Polyacrylate-assisted synthesis of stable copper nanoparticles and copper(I) oxide nanocubes with high catalytic efficiency. Journal of Materials Chemistry, 2009, 19, 8463.	6.7	83
11	Chronic dietary toxicity of zinc oxide nanoparticles in common carp (Cyprinus carpio L.): Tissue accumulation and physiological responses. Ecotoxicology and Environmental Safety, 2018, 147, 110-116.	6.0	83
12	Effects of chronic dietary exposure of zinc oxide nanoparticles on the serum protein profile of juvenile common carp (Cyprinus carpio L.). Science of the Total Environment, 2017, 579, 1504-1511.	8.0	65
13	Silver Nanoparticles Modified by Gelatin with Extraordinary pH Stability and Long-Term Antibacterial Activity. PLoS ONE, 2014, 9, e103675.	2.5	48
14	Comparative Study of Antimicrobial Activity of AgBr and Ag Nanoparticles (NPs). PLoS ONE, 2015, 10, e0119202.	2.5	42
15	Antifungal effects of copper and silver nanoparticles against white and brown-rot fungi. Journal of Materials Science, 2017, 52, 2720-2729.	3.7	41
16	Antibacterial nanomaterials: Upcoming hope to overcome antibiotic resistance crisis. Nanotechnology Reviews, 2022, 11, 1115-1142.	5.8	28
17	Re-crystallization of silver nanoparticles in a highly concentrated NaCl environment—a new substrate for surface enhanced IR-visible Raman spectroscopy. CrystEngComm, 2011, 13, 2242.	2.6	27
18	Preparation, characterization and antimicrobial efficiency of Ag/PDDA-diatomite nanocomposite. Colloids and Surfaces B: Biointerfaces, 2013, 110, 191-198.	5.0	23

AleÅi PanÃiÄ**e**k

#	Article	IF	CITATIONS
19	Influence of various chloride ion concentrations on silver nanoparticle transformations and effectiveness in surface enhanced Raman scattering for different excitation wavelengths. RSC Advances, 2015, 5, 9737-9744.	3.6	20
20	Silver Voyage from Macro- to Nanoworld. Journal of Chemical Education, 2010, 87, 1094-1097.	2.3	16
21	Reproducible synthesis of silver colloidal particles tailored for application in near-infrared surface-enhanced Raman spectroscopy. Journal of Materials Chemistry, 2011, 21, 6416.	6.7	16
22	Synthesis of silver nanoparticles by <i>Bacillus subtilis</i> Tâ€lÂgrowing on agroâ€industrial wastes and producing biosurfactant. IET Nanobiotechnology, 2016, 10, 62-68.	3.8	14
23	Specific detection of Staphylococcus aureus infection and marker for Alzheimer disease by surface enhanced Raman spectroscopy using silver and gold nanoparticle-coated magnetic polystyrene beads. Scientific Reports, 2021, 11, 6240.	3.3	12
24	Highly efficient silver particle layers on glass substrate synthesized by the sonochemical method for surface enhanced Raman spectroscopy purposes. Ultrasonics Sonochemistry, 2016, 32, 165-172.	8.2	11
25	Culture medium mediated aggregation and re-crystallization of silver nanoparticles reduce their toxicity. Applied Materials Today, 2018, 12, 198-206.	4.3	10
26	The effect of graphene oxide on signalling of xenobiotic receptors involved in biotransformation. Chemosphere, 2020, 253, 126753.	8.2	7
27	Preparation of silver particles and its application for surface enhanced Raman scattering with near-infrared excitation. Materials Research Bulletin, 2014, 50, 63-67.	5.2	6
28	Microthermal-induced subcellular-targeted protein damage in cells on plasmonic nanosilver-modified surfaces evokes a two-phase HSP-p97/VCP response. Nature Communications, 2021, 12, 713.	12.8	6
29	Crucial cytotoxic and antimicrobial activity changes driven by amount of doped silver in biocompatible carbon nitride nanosheets. Colloids and Surfaces B: Biointerfaces, 2021, 202, 111680.	5.0	6
30	Macromol. Mater. Eng. 2/2010. Macromolecular Materials and Engineering, 2010, 295, 91-94.	3.6	5
31	Cornetâ€Like Phosphotriazine/Diamine Polymers as Reductant and Matrix for the Synthesis of Silver Nanocomposites with Antimicrobial Activity. Macromolecular Materials and Engineering, 2010, 295, 108-114.	3.6	4
32	The impact of graphene oxide on androgen receptor signalling in prostate cancer cells. Chemosphere, 2021, 269, 128759.	8.2	3