Tatjana Sauka-Spengler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2054547/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single-cell atlas of early chick development reveals gradual segregation of neural crest lineage from the neural plate border during neurulation. ELife, 2022, 11, .	2.8	24
2	A blood-based miRNA signature with prognostic value for overall survival in advanced stage non-small cell lung cancer treated with immunotherapy. Npj Precision Oncology, 2022, 6, 19.	2.3	20
3	Cellular plasticity in the neural crest and cancer. Current Opinion in Genetics and Development, 2022, 75, 101928.	1.5	0
4	Multiomic atlas with functional stratification and developmental dynamics of zebrafish cis-regulatory elements. Nature Genetics, 2022, 54, 1037-1050.	9.4	26
5	Characterising open chromatin in chick embryos identifies cis-regulatory elements important for paraxial mesoderm formation and axis extension. Nature Communications, 2021, 12, 1157.	5.8	8
6	The Cranial Neural Crest in a Multiomics Era. Frontiers in Physiology, 2021, 12, 634440.	1.3	10
7	Mechanistic Drivers of Müllerian Duct Development and Differentiation Into the Oviduct. Frontiers in Cell and Developmental Biology, 2021, 9, 605301.	1.8	27
8	Adipocyte-like signature in ovarian cancer minimal residual disease identifies metabolic vulnerabilities of tumor initiating cells. JCI Insight, 2021, 6, .	2.3	3
9	Evidence from oyster suggests an ancient role for Pdx in regulating insulin gene expression in animals. Nature Communications, 2021, 12, 3117.	5.8	10
10	Ex ovo electroporation of early chicken embryos. STAR Protocols, 2021, 2, 100424.	0.5	5
11	Rapid and efficient enhancer cloning and in vivo screening using the developing chick embryo. STAR Protocols, 2021, 2, 100507.	0.5	1
12	Dissociation of chick embryonic tissue for FACS and preparation of isolated cells for genome-wide downstream assays. STAR Protocols, 2021, 2, 100414.	0.5	2
13	Loss of Extreme Long-Range Enhancers in Human Neural Crest Drives a Craniofacial Disorder. Cell Stem Cell, 2020, 27, 765-783.e14.	5.2	101
14	Tissue-Specific In Vivo Biotin Chromatin Immunoprecipitation with Sequencing in Zebrafish and Chicken. STAR Protocols, 2020, 1, 100066.	0.5	5
15	Insights into olfactory ensheathing cell development from a laserâ€microdissection and transcriptomeâ€profiling approach. Glia, 2020, 68, 2550-2584.	2.5	13
16	An evolutionarily ancient mechanism for regulation of hemoglobin expression in vertebrate red cells. Blood, 2020, 136, 269-278.	0.6	16
17	Functional Heterogeneity within the Developing Zebrafish Epicardium. Developmental Cell, 2020, 52, 574-590.e6.	3.1	48
18	The Repertoire of Serous Ovarian Cancer Non-genetic Heterogeneity Revealed by Single-Cell Sequencing of Normal Fallopian Tube Epithelial Cells. Cancer Cell, 2020, 37, 226-242.e7.	7.7	117

TATJANA SAUKA-SPENGLER

#	Article	IF	CITATIONS
19	Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair. Nature Communications, 2020, 11, 600.	5.8	216
20	A highly accurate platform for clone-specific mutation discovery enables the study of active mutational processes. ELife, 2020, 9, .	2.8	5
21	Nanoscale dynamics of cholesterol in the cell membrane. Journal of Biological Chemistry, 2019, 294, 12599-12609.	1.6	44
22	Reconstruction of the Global Neural Crest Gene Regulatory Network InÂVivo. Developmental Cell, 2019, 51, 255-276.e7.	3.1	108
23	A genome-wide assessment of the ancestral neural crest gene regulatory network. Nature Communications, 2019, 10, 4689.	5.8	46
24	Early chromatin shaping predetermines multipotent vagal neural crest into neural, neuronal and mesenchymal lineages. Nature Cell Biology, 2019, 21, 1504-1517.	4.6	41
25	Generation of a double binary transgenic zebrafish model to study myeloid gene regulation in response to oncogene activation in melanocytes. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	14
26	Genome and epigenome engineering CRISPR toolkit for <i>in vivo</i> modulation of <i>cis</i> -regulatory interactions and gene expression in the chicken embryo. Development (Cambridge), 2018, 145, .	1.2	58
27	The sea lamprey germline genome provides insights into programmed genome rearrangement and vertebrate evolution. Nature Genetics, 2018, 50, 270-277.	9.4	262
28	From Pioneer to Repressor: Bimodal foxd3 Activity Dynamically Remodels Neural Crest Regulatory Landscape InÂVivo. Developmental Cell, 2018, 47, 608-628.e6.	3.1	92
29	Biotagging, an in vivo biotinylation approach for cell-type specific subcellular profiling in zebrafish. Methods, 2018, 150, 24-31.	1.9	3
30	Translation reprogramming is an evolutionarily conserved driver of phenotypic plasticity and therapeutic resistance in melanoma. Genes and Development, 2017, 31, 18-33.	2.7	184
31	Biotagging of Specific Cell Populations in Zebrafish Reveals Gene Regulatory Logic Encoded in the Nuclear Transcriptome. Cell Reports, 2017, 19, 425-440.	2.9	43
32	BRG1-SWI/SNF-dependent regulation of the Wt1 transcriptional landscape mediates epicardial activity during heart development and disease. Nature Communications, 2017, 8, 16034.	5.8	69
33	Active nuclear transcriptome analysis reveals inflammasome-dependent mechanism for early neutrophil response to Mycobacterium marinum. Scientific Reports, 2017, 7, 6505.	1.6	26
34	Genetic dissection of the α-globin super-enhancer in vivo. Nature Genetics, 2016, 48, 895-903.	9.4	308
35	Mapping a multiplexed zoo of mRNA expression. Development (Cambridge), 2016, 143, 3632-3637.	1.2	198
36	Premalignant SOX2 overexpression in the fallopian tubes of ovarian cancer patients: Discovery and validation studies. EBioMedicine, 2016, 10, 137-149.	2.7	34

#	Article	IF	CITATIONS
37	Active DNA demethylation at enhancers during the vertebrate phylotypic period. Nature Genetics, 2016, 48, 417-426.	9.4	210
38	Evolutionarily conserved role for SoxC genes in neural crest specification and neuronal differentiation. Developmental Biology, 2015, 397, 282-292.	0.9	19
39	A Novel TGFβ Modulator that Uncouples R-Smad/I-Smad-Mediated Negative Feedback from R-Smad/Ligand-Driven Positive Feedback. PLoS Biology, 2015, 13, e1002051.	2.6	7
40	A Reporter Assay in Lamprey Embryos Reveals Both Functional Conservation and Elaboration of Vertebrate Enhancers. PLoS ONE, 2014, 9, e85492.	1.1	34
41	Understanding functional miRNA–target interactions in vivo by site-specific genome engineering. Nature Communications, 2014, 5, 4640.	5.8	86
42	Transcriptome analysis reveals novel players in the cranial neural crest gene regulatory network. Genome Research, 2014, 24, 281-290.	2.4	106
43	A fate-map for cranial sensory ganglia in the sea lamprey. Developmental Biology, 2014, 385, 405-416.	0.9	27
44	Expression and function of transcription factor cMyb during cranial neural crest development. Mechanisms of Development, 2014, 132, 38-43.	1.7	21
45	The African coelacanth genome provides insights into tetrapod evolution. Nature, 2013, 496, 311-316.	13.7	612
46	Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nature Genetics, 2013, 45, 415-421.	9.4	588
47	Dynamic and Differential Regulation of Stem Cell Factor FoxD3 in the Neural Crest Is Encrypted in the Genome. PLoS Genetics, 2012, 8, e1003142.	1.5	121
48	Expression of Sox family genes in early lamprey development. International Journal of Developmental Biology, 2012, 56, 377-383.	0.3	15
49	DNA methyltransferase3A as a molecular switch mediating the neural tube-to-neural crest fate transition. Genes and Development, 2012, 26, 2380-2385.	2.7	67
50	Induction of the neural crest state: Control of stem cell attributes by gene regulatory, post-transcriptional and epigenetic interactions. Developmental Biology, 2012, 366, 10-21.	0.9	106
51	Expression of Sympathetic Nervous System Genes in Lamprey Suggests Their Recruitment for Specification of a New Vertebrate Feature. PLoS ONE, 2011, 6, e26543.	1.1	33
52	Ancient Pbx-Hox signatures define hundreds of vertebrate developmental enhancers. BMC Genomics, 2011, 12, 637.	1.2	27
53	A Sox10 enhancer element common to the otic placode and neural crest is activated by tissue-specific paralogs. Development (Cambridge), 2011, 138, 3689-3698.	1.2	54
54	Development and analysis of a germline BAC resource for the sea lamprey, a vertebrate that undergoes substantial chromatin diminution. Chromosoma, 2010, 119, 381-389.	1.0	44

#	Article	IF	CITATIONS
55	Genomic code for <i>Sox10</i> activation reveals a key regulatory enhancer for cranial neural crest. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3570-3575.	3.3	174
56	Evidence for the prepattern/cooption model of vertebrate jaw evolution. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17262-17267.	3.3	107
57	Histone Demethylase JmjD2A Regulates Neural Crest Specification. Developmental Cell, 2010, 19, 460-468.	3.1	115
58	SnapShot: Neural Crest. Cell, 2010, 143, 486-486.e1.	13.5	26
59	Assembling Neural Crest Regulatory Circuits into a Gene Regulatory Network. Annual Review of Cell and Developmental Biology, 2010, 26, 581-603.	4.0	267
60	Dil Cell Labeling in Lamprey Embryos. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5124.	0.2	9
61	Culturing Lamprey Embryos: Figure 1 Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5122.	0.2	20
62	Whole-Mount In Situ Hybridization on Lamprey Embryos. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5125.	0.2	5
63	The Sea Lamprey <i>Petromyzon marinus</i> : A Model for Evolutionary and Developmental Biology. Cold Spring Harbor Protocols, 2009, 2009, pdb.emo113.	0.2	59
64	Chapter 1 Gene Regulatory Networks in Neural Crest Development and Evolution. Current Topics in Developmental Biology, 2009, 86, 1-14.	1.0	23
65	Immunostaining of Whole-Mount and Sectioned Lamprey Embryos. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5126.	0.2	8
66	Microinjection of RNA and Morpholino Oligos into Lamprey Embryos. Cold Spring Harbor Protocols, 2009, pdb.prot5123-pdb.prot5123.	0.2	18
67	Evolution of the neural crest viewed from a gene regulatory perspective. Genesis, 2008, 46, 673-682.	0.8	69
68	The amphioxus genome and the evolution of the chordate karyotype. Nature, 2008, 453, 1064-1071.	13.7	1,496
69	A gene regulatory network orchestrates neural crest formation. Nature Reviews Molecular Cell Biology, 2008, 9, 557-568.	16.1	599
70	Chapter 12 Gain―and Lossâ€ofâ€Function Approaches in the Chick Embryo. Methods in Cell Biology, 2008, 87, 237-256.	0.5	124
71	Insights From a Sea Lamprey Into the Evolution of Neural Crest Gene Regulatory Network. Biological Bulletin, 2008, 214, 303-314.	0.7	51
72	Dissecting early regulatory relationships in the lamprey neural crest gene network. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20083-20088.	3.3	96

TATJANA SAUKA-SPENGLER

#	Article	IF	CITATIONS
73	Molecular Characterization of the Gastrula in the Turtle Emys orbicularis: An Evolutionary Perspective on Gastrulation. PLoS ONE, 2008, 3, e2676.	1.1	22
74	Ancient Evolutionary Origin of the Neural Crest Gene Regulatory Network. Developmental Cell, 2007, 13, 405-420.	3.1	228
75	Evolution of Axis Specification Mechanisms in Jawed Vertebrates: Insights from a Chondrichthyan. PLoS ONE, 2007, 2, e374.	1.1	50
76	Development and evolution of the migratory neural crest: a gene regulatory perspective. Current Opinion in Genetics and Development, 2006, 16, 360-366.	1.5	87
77	Comparative analysis of gnathostome Otx gene expression patterns in the developing eye: implications for the functional evolution of the multigene family. Developmental Biology, 2005, 278, 560-575.	0.9	44
78	Expression of the polycomb group gene bmi-1 in the early chick embryo. Gene Expression Patterns, 2004, 5, 23-27.	0.3	4
79	Characterization of Brachyury genes in the dogfish S. canicula and the lamprey L. fluviatilis. Insights into gastrulation in a chondrichthyan. Developmental Biology, 2003, 263, 296-307.	0.9	26
80	The Mammalian Crx Genes Are Highly Divergent Representatives of the Otx5 Gene Family, a Gnathostome Orthology Class of Orthodenticle-Related Homeogenes Involved in the Differentiation of Retinal Photoreceptors and Circadian Entrainment. Molecular Biology and Evolution, 2003, 20, 513-521.	3.5	48
81	Structure and Expression of Three Emx Genes in the Dogfish Scyliorhinus canicula: Functional and Evolutionary Implications. Developmental Biology, 2002, 247, 390-404.	0.9	37
82	Embryonic expression of Tbx1, a DiGeorge syndrome candidate gene, in the lamprey Lampetrafluviatilis. Gene Expression Patterns, 2002, 2, 99-103.	0.3	37
83	Expression patterns of an Otx2 and an Otx5 orthologue in the urodele Pleurodeles waltl : implications on the evolutionary relationships between the balancers and cement gland in amphibians. Development Genes and Evolution, 2002, 212, 380-387.	0.4	7
84	Structure and expression of an Otx5-related gene in the dogfish Scyliorhinus canicula : evidence for a conserved role of Otx5 and Crx genes in the specification of photoreceptors. Development Genes and Evolution, 2001, 211, 533-544.	0.4	37