Josep

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/20544/josep-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

290	14,992	70	104
papers	citations	h-index	g-index
294 ext. papers	16,294 ext. citations	6.7 avg, IF	6.6 L-index

#	Paper	IF	Citations
290	Systematic identification of trimethoprim metabolites in lettuce <i>Analytical and Bioanalytical Chemistry</i> , 2022 , 414, 3121	4.4	O
289	Implications of the use of organic fertilizers for antibiotic resistance gene distribution in agricultural soils and fresh food products. A plot-scale study. <i>Science of the Total Environment</i> , 2021 , 815, 151973	10.2	O
288	Compounds of emerging concern as new plant stressors linked to water reuse and biosolid application in agriculture. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 105198	6.8	9
287	Occurrence and human health risk assessment of antibiotics and their metabolites in vegetables grown in field-scale agricultural systems. <i>Journal of Hazardous Materials</i> , 2021 , 401, 123424	12.8	21
286	Local and downstream cumulative effects of traditional meadow management on stream-water quality and multiple riparian taxa. <i>Science of the Total Environment</i> , 2021 , 794, 148601	10.2	О
285	Effects of prescription antibiotics on soil- and root-associated microbiomes and resistomes in an agricultural context. <i>Journal of Hazardous Materials</i> , 2020 , 400, 123208	12.8	17
284	Elucidating biotransformation pathways of ofloxacin in lettuce (Lactuca sativa L). <i>Environmental Pollution</i> , 2020 , 260, 114002	9.3	11
283	Does the application of human waste as a fertilization material in agricultural production pose adverse effects on human health attributable to contaminants of emerging concern?. <i>Environmental Research</i> , 2020 , 182, 109132	7.9	5
282	Occurrence and human health risk assessment of antibiotics and trace elements in Lactuca sativa amended with different organic fertilizers. <i>Environmental Research</i> , 2020 , 190, 109946	7.9	8
281	Dose effect of Zn and Cu in sludge-amended soils on vegetable uptake of trace elements, antibiotics, and antibiotic resistance genes: Human health implications. <i>Environmental Research</i> , 2020 , 191, 109879	7.9	8
2 80	On the contribution of reclaimed wastewater irrigation to the potential exposure of humans to antibiotics, antibiotic resistant bacteria and antibiotic resistance genes INEREUS COST Action ES1403 position paper. <i>Journal of Environmental Chemical Engineering</i> , 2020 , 8, 102131	6.8	44
279	Organic micropollutants in sewage sludge: influence of thermal and ultrasound hydrolysis processes prior to anaerobic stabilization. <i>Environmental Technology (United Kingdom)</i> , 2020 , 41, 1358-1	36 5	15
278	Effects of industrial pollution on the reproductive biology of Squalius laietanus (Actinopterygii, Cyprinidae) in a Mediterranean stream (NE Iberian Peninsula). <i>Fish Physiology and Biochemistry</i> , 2020 , 46, 247-264	2.7	3
277	Occurrence and human health implications of chemical contaminants in vegetables grown in peri-urban agriculture. <i>Environment International</i> , 2019 , 124, 49-57	12.9	38
276	Simultaneous determination of multiclass antibiotics and their metabolites in four types of field-grown vegetables. <i>Analytical and Bioanalytical Chemistry</i> , 2019 , 411, 5209-5222	4.4	20
275	Antibiotic resistance gene distribution in agricultural fields and crops. A soil-to-food analysis. <i>Environmental Research</i> , 2019 , 177, 108608	7.9	45
274	Chemical characterization and phytotoxicity assessment of peri-urban soils using seed germination and root elongation tests. <i>Environmental Science and Pollution Research</i> , 2019 , 26, 34401-34411	5.1	7

273	Removal of Organic Micropollutants in Wastewater Treated by Activated Sludge and Constructed Wetlands: A Comparative Study. <i>Water (Switzerland)</i> , 2019 , 11, 2515	3	15
272	Ranking of crop plants according to their potential to uptake and accumulate contaminants of emerging concern. <i>Environmental Research</i> , 2019 , 170, 422-432	7.9	72
271	Distribution of antibiotic resistance genes in soils and crops. A field study in legume plants (Vicia faba L.) grown under different watering regimes. <i>Environmental Research</i> , 2019 , 170, 16-25	7.9	48
270	Antibiotic resistance genes distribution in microbiomes from the soil-plant-fruit continuum in commercial Lycopersicon esculentum fields under different agricultural practices. <i>Science of the Total Environment</i> , 2019 , 652, 660-670	10.2	37
269	Analytical strategies for determining the sources and ecotoxicological risk of PAHs in river sediment. <i>Microchemical Journal</i> , 2018 , 137, 90-97	4.8	16
268	Applications of the CEN Methodology in Multiple Oil Spills in Spanish Waters 2018 , 325-343		1
267	Occurrence and bioaccumulation of chemical contaminants in lettuce grown in peri-urban horticulture. <i>Science of the Total Environment</i> , 2018 , 637-638, 1166-1174	10.2	26
266	Determination of the Eglycosylate fraction of contaminants of emerging concern in lettuce (Lactuca sativa L.) grown under controlled conditions. <i>Analytical and Bioanalytical Chemistry</i> , 2018 , 410, 5715-5721	4.4	3
265	Effect of soil biochar concentration on the mitigation of emerging organic contaminant uptake in lettuce. <i>Journal of Hazardous Materials</i> , 2017 , 323, 386-393	12.8	35
264	Occurrence of chemical contaminants in peri-urban agricultural irrigation waters and assessment of their phytotoxicity and crop productivity. <i>Science of the Total Environment</i> , 2017 , 599-600, 1140-1148	10.2	30
263	Degradation of Emerging Organic Contaminants in an Agricultural Soil: Decoupling Biotic and Abiotic Processes. <i>Water, Air, and Soil Pollution</i> , 2017 , 228, 1	2.6	15
262	Two important limitations relating to the spiking of environmental samples with contaminants of emerging concern: How close to the real analyte concentrations are the reported recovered values?. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 15202-15205	5.1	8
261	Linking the morphological and metabolomic response of Lactuca sativa L exposed to emerging contaminants using GC IGC-MS and chemometric tools. <i>Scientific Reports</i> , 2017 , 7, 6546	4.9	40
260	The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacterialand resistance genes - A review. <i>Water Research</i> , 2017 , 123, 448-467	12.5	251
259	Mitigation of emerging contaminants by full-scale horizontal flow constructed wetlands fed with secondary treated wastewater. <i>Ecological Engineering</i> , 2017 , 99, 222-227	3.9	62
258	Assessment of the mechanisms involved in the removal of emerging contaminants by microalgae from wastewater: a laboratory scale study. <i>Journal of Hazardous Materials</i> , 2016 , 301, 197-205	12.8	186
257	Estimate of uptake and translocation of emerging organic contaminants from irrigation water concentration in lettuce grown under controlled conditions. <i>Journal of Hazardous Materials</i> , 2016 , 305, 139-148	12.8	95
256	Distribution and Sources of Petroleum Hydrocarbons in Recent Sediments of the Imo River, SE Nigeria. <i>Archives of Environmental Contamination and Toxicology</i> , 2016 , 70, 372-82	3.2	10

255	Behaviour of pharmaceuticals and personal care products in constructed wetland compartments: Influent, effluent, pore water, substrate and plant roots. <i>Chemosphere</i> , 2016 , 145, 508-17	8.4	77
254	Photochemical effects on oil spill fingerprinting 2016 , 917-959		4
253	Inverse modeling of the biodegradation of emerging organic contaminants in the soil-plant system. <i>Chemosphere</i> , 2016 , 156, 236-244	8.4	19
252	Development of an Analytical Procedure for the Determination of Trihalomethanes in Leafy Vegetable by Headspace-SPME Followed by GC-ECD Determination. <i>Food Analytical Methods</i> , 2015 , 8, 1093-1100	3.4	2
251	COST Action ES1403: new and emerging challenges and opportunities in wastewater reuse (NEREUS). <i>Environmental Science and Pollution Research</i> , 2015 , 22, 7183-6	5.1	20
250	Diffusive gradients in thin films for predicting methylmercury bioavailability in freshwaters after photodegradation. <i>Chemosphere</i> , 2015 , 131, 184-91	8.4	17
249	Emerging organic contaminant removal in a full-scale hybrid constructed wetland system for wastewater treatment and reuse. <i>Ecological Engineering</i> , 2015 , 80, 108-116	3.9	129
248	Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: a pilot-scale study. <i>Journal of Hazardous Materials</i> , 2015 , 288, 34-42	12.8	258
247	Analytical developments for oil spill fingerprinting. <i>Trends in Environmental Analytical Chemistry</i> , 2015 , 5, 26-34	12	45
246	Input and leaching potential of copper, zinc, and selenium in agricultural soil from swine slurry. <i>Archives of Environmental Contamination and Toxicology</i> , 2014 , 66, 277-86	3.2	9
245	Assessment of photochemical processes in marine oil spill fingerprinting. <i>Marine Pollution Bulletin</i> , 2014 , 79, 268-77	6.7	115
244	Attenuation of emerging organic contaminants in a hybrid constructed wetland system under different hydraulic loading rates and their associated toxicological effects in wastewater. <i>Science of the Total Environment</i> , 2014 , 470-471, 1272-80	10.2	101
243	Assessment of a dielectric barrier discharge plasma reactor at atmospheric pressure for the removal of bisphenol A and tributyltin. <i>Environmental Technology (United Kingdom)</i> , 2014 , 35, 1418-26	2.6	10
242	Emerging organic contaminants in vertical subsurface flow constructed wetlands: influence of media size, loading frequency and use of active aeration. <i>Science of the Total Environment</i> , 2014 , 494-495, 211-7	10.2	77
241	Chemometrics-assisted effect-directed analysis of crude and refined oil using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	33
240	Evaluation of antibiotic mobility in soil associated with swine-slurry soil amendment under cropping conditions. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 12336-44	5.1	10
239	Comparison of different types of diffusive gradient in thin film samplers for measurement of dissolved methylmercury in freshwaters. <i>Talanta</i> , 2014 , 129, 486-90	6.2	28
238	Protocols for the Chemical Analysis of Hydrocarbons in Petroleum Oils and the Assessment of Environmental Contamination. <i>Springer Protocols</i> , 2014 , 47-59	0.3	2

237	Decontamination of waterborne chemical pollutants by using atmospheric pressure nonthermal plasma: a review. <i>Environmental Technology Reviews</i> , 2014 , 3, 71-91	7.7	25
236	Removal of cyanide from water by means of plasma discharge technology. <i>Water Research</i> , 2013 , 47, 1701-7	12.5	41
235	Removal of priority pollutants from water by means of dielectric barrier discharge atmospheric plasma. <i>Journal of Hazardous Materials</i> , 2013 , 262, 664-73	12.8	86
234	Recurrent arrival of oil to Galician coast: the final step of the Prestige deep oil spill. <i>Journal of Hazardous Materials</i> , 2013 , 250-251, 82-90	12.8	29
233	Chemical characterization of organic microcontaminant sources and biological effects in riverine sediments impacted by urban sewage and pulp mill discharges. <i>Chemosphere</i> , 2013 , 90, 611-9	8.4	27
232	Evaluation of artificially-weathered standard fuel oil toxicity by marine invertebrate embryogenesis bioassays. <i>Chemosphere</i> , 2013 , 90, 1103-8	8.4	38
231	Emerging organic contaminant removal depending on primary treatment and operational strategy in horizontal subsurface flow constructed wetlands: influence of redox. <i>Water Research</i> , 2013 , 47, 315-2	25 ^{12.5}	120
230	The use of long-chain alkylbenzenes and alkyltoluenes for fingerprinting marine oil wastes. <i>Chemosphere</i> , 2013 , 91, 336-43	8.4	10
229	Endocrine disruption in thicklip grey mullet (Chelon labrosus) from the Urdaibai Biosphere Reserve (Bay of Biscay, Southwestern Europe). <i>Science of the Total Environment</i> , 2013 , 443, 233-44	10.2	35
228	Use of effect-directed analysis for the identification of organic toxicants in surface flow constructed wetland sediments. <i>Chemosphere</i> , 2013 , 91, 1165-75	8.4	25
227	Towards universal wavelength-specific photodegradation rate constants for methyl mercury in humic waters, exemplified by a Boreal lake-wetland gradient. <i>Environmental Science & Environmental Scienc</i>	10.3	45
226	Foliar sorption of emerging and priority contaminants under controlled conditions. <i>Journal of Hazardous Materials</i> , 2013 , 260, 176-82	12.8	14
225	Uptake of microcontaminants by crops irrigated with reclaimed water and groundwater under real field greenhouse conditions. <i>Environmental Science and Pollution Research</i> , 2013 , 20, 3629-38	5.1	52
224	Solving chromatographic challenges in comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry using multivariate curve resolution-alternating least squares. <i>Analytical and Bioanalytical Chemistry</i> , 2013 , 405, 6235-49	4.4	38
223	Effects of simulated weathering on the toxicity of selected crude oils and their components to sea urchin embryos. <i>Journal of Hazardous Materials</i> , 2013 , 260, 67-73	12.8	22
222	Vestibulotoxic properties of potential metabolites of allylnitrile. <i>Toxicological Sciences</i> , 2013 , 135, 182-	92.4	8
221	Removal of Pharmaceutical Compounds from Wastewater and Surface Water by Natural Treatments. <i>Comprehensive Analytical Chemistry</i> , 2013 , 62, 409-433	1.9	8
220	Laboratory and field evaluation of diffusive gradient in thin films (DGT) for monitoring levels of dissolved mercury in natural river water. <i>International Journal of Environmental Analytical Chemistry</i> 2012, 92, 1689-1698	1.8	28

219	Analytical procedures for the determination of emerging organic contaminants in plant material: a review. <i>Analytica Chimica Acta</i> , 2012 , 722, 8-20	6.6	45
218	Post-incident monitoring to evaluate environmental damage from shipping incidents: chemical and biological assessments. <i>Journal of Environmental Management</i> , 2012 , 109, 136-53	7.9	34
217	Uptake of organic emergent contaminants in spath and lettuce: an in vitro experiment. <i>Journal of Agricultural and Food Chemistry</i> , 2012 , 60, 2000-7	5.7	82
216	Determination of nitrosamines and caffeine metabolites in wastewaters using gas chromatography mass spectrometry and ionic liquid stationary phases. <i>Journal of Chromatography A</i> , 2012 , 1261, 164-70	4.5	50
215	Compositional properties characterizing commonly transported oils and controlling their fate in the marine environment. <i>Journal of Environmental Monitoring</i> , 2012 , 14, 3220-9		16
214	Temporal evolution in PPCP removal from urban wastewater by constructed wetlands of different configuration: a medium-term study. <i>Chemosphere</i> , 2012 , 88, 161-7	8.4	88
213	Determination of benzothiazoles and benzotriazoles by using ionic liquid stationary phases in gas chromatography mass spectrometry. Application to their characterization in wastewaters. <i>Journal of Chromatography A</i> , 2012 , 1230, 117-22	4.5	46
212	Resolution and quantification of complex mixtures of polycyclic aromatic hydrocarbons in heavy fuel oil sample by means of GC IGC-TOFMS combined to multivariate curve resolution. <i>Analytical Chemistry</i> , 2011 , 83, 9289-97	7.8	104
211	Methylmercury levels and bioaccumulation in the aquatic food web of a highly mercury-contaminated reservoir. <i>Environment International</i> , 2011 , 37, 1213-8	12.9	62
210	Screening of 47 organic microcontaminants in agricultural irrigation waters and their soil loading. <i>Water Research</i> , 2011 , 45, 221-31	12.5	129
209	Occurrence and potential crop uptake of emerging contaminants and related compounds in an agricultural irrigation network. <i>Science of the Total Environment</i> , 2011 , 412-413, 14-9	10.2	100
208	Origin and vertical dynamics of particulate organic matter in a salt-wedge estuary, the Ebro Delta, inferred from lipid molecular markers and compound-specific isotope carbon analysis. <i>Marine Chemistry</i> , 2011 , 126, 269-280	3.7	6
207	Patterns of mercury and methylmercury bioaccumulation in fish species downstream of a long-term mercury-contaminated site in the lower Ebro River (NE Spain). <i>Chemosphere</i> , 2011 , 84, 1642-9	8.4	56
206	Evaluation of PPCPs removal in a combined anaerobic digester-constructed wetland pilot plant treating urban wastewater. <i>Chemosphere</i> , 2011 , 84, 1200-7	8.4	79
205	Polyphasic approach for assessing changes in an autochthonous marine bacterial community in the presence of Prestige fuel oil and its biodegradation potential. <i>Applied Microbiology and Biotechnology</i> , 2011 , 91, 823-34	5.7	47
204	Statistical modelling of organic matter and emerging pollutants removal in constructed wetlands. <i>Bioresource Technology</i> , 2011 , 102, 4981-8	11	52
203	Influence of design, physico-chemical and environmental parameters on pharmaceuticals and fragrances removal by constructed wetlands. <i>Water Science and Technology</i> , 2011 , 63, 2527-34	2.2	45
202	Removal of selected organic pollutants and coliforms in pilot constructed wetlands in southeastern Mexico. <i>International Journal of Environmental Analytical Chemistry</i> , 2011 , 91, 680-692	1.8	9

201	Evaluation of primary treatment and loading regimes in the removal of pharmaceuticals and personal care products from urban wastewaters by subsurface-flow constructed wetlands. <i>International Journal of Environmental Analytical Chemistry</i> , 2011 , 91, 632-653	1.8	45
200	Occurrence and fate of benzothiazoles and benzotriazoles in constructed wetlands. <i>Water Science and Technology</i> , 2010 , 61, 191-8	2.2	68
199	Contaminant Removal Processes in Subsurface-Flow Constructed Wetlands: A Review. <i>Critical Reviews in Environmental Science and Technology</i> , 2010 , 40, 561-661	11.1	333
198	Part-per-trillion determination of pharmaceuticals, pesticides, and related organic contaminants in river water by solid-phase extraction followed by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. <i>Analytical Chemistry</i> , 2010 , 82, 699-706	7.8	99
197	An integrated study of endocrine disruptors in sediments and reproduction-related parameters in bivalve molluscs from the Biosphere's Reserve of Urdaibai (Bay of Biscay). <i>Marine Environmental Research</i> , 2010 , 69 Suppl, S63-6	3.3	18
196	Assessment of full-scale natural systems for the removal of PPCPs from wastewater in small communities. <i>Water Research</i> , 2010 , 44, 1429-39	12.5	178
195	Comprehensive assessment of the design configuration of constructed wetlands for the removal of pharmaceuticals and personal care products from urban wastewaters. <i>Water Research</i> , 2010 , 44, 3669-7	78 ^{12.5}	194
194	Mercury in Aquatic Organisms of the Ebro River Basin. <i>Handbook of Environmental Chemistry</i> , 2010 , 239	-258	1
193	Quantification and source identification of polycyclic aromatic hydrocarbons in core sediments from Sundarban mangrove wetland, India. <i>Archives of Environmental Contamination and Toxicology</i> , 2010 , 59, 49-61	3.2	61
192	Capacity of a horizontal subsurface flow constructed wetland system for the removal of emerging pollutants: an injection experiment. <i>Chemosphere</i> , 2010 , 81, 1137-42	8.4	94
191	Water quality improvement in a full-scale tertiary constructed wetland: effects on conventional and specific organic contaminants. <i>Science of the Total Environment</i> , 2009 , 407, 2517-24	10.2	72
190	Photodegradation of Carbamazepine, Ibuprofen, Ketoprofen and 17Œthinylestradiol in Fresh and Seawater. <i>Water, Air, and Soil Pollution</i> , 2009 , 196, 161-168	2.6	130
189	Changes of Heavy Metal and PCB Contents in Surficial Sediments of the Barcelona Harbour after the Opening of a New Entrance. <i>Water, Air, and Soil Pollution</i> , 2009 , 204, 271-284	2.6	10
188	Advances in the determination of degradation intermediates of personal care products in environmental matrixes: a review. <i>Analytical and Bioanalytical Chemistry</i> , 2009 , 393, 847-60	4.4	30
187	Development of an analytical procedure for the determination of emerging and priority organic pollutants in leafy vegetables by pressurized solvent extraction followed by GC-MS determination. <i>Analytical and Bioanalytical Chemistry</i> , 2009 , 394, 1319-27	4.4	42
186	Prenatal and early childhood exposure to mercury and methylmercury in Spain, a high-fish-consumer country. <i>Archives of Environmental Contamination and Toxicology</i> , 2009 , 56, 615-22	3.2	66
185	Butyltin occurrence and risk assessment in the sediments of the Iberian Peninsula. <i>Journal of Environmental Management</i> , 2009 , 90 Suppl 1, S25-30	7.9	20
184	Multi-biomarker responses in the freshwater mussel Dreissena polymorpha exposed to polychlorobiphenyls and metals. <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2009 , 149, 281-8	3.2	53

183	Characterization of benzothiazoles, benzotriazoles and benzosulfonamides in aqueous matrixes by solid-phase extraction followed by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. <i>Journal of Chromatography A</i> , 2009 , 1216, 4013-9	4.5	66
182	Simultaneous determination of methyl- and ethyl-mercury by solid-phase microextraction followed by gas chromatography atomic fluorescence detection. <i>Journal of Chromatography A</i> , 2009 , 1216, 8828-	-3 ¹ 4 ⁵	27
181	Photo-solid-phase microextraction of selected indoor air pollutants from office buildings. Identification of their photolysis intermediates. <i>Journal of Chromatography A</i> , 2009 , 1216, 8969-78	4.5	21
180	Allylnitrile metabolism by CYP2E1 and other CYPs leads to distinct lethal and vestibulotoxic effects in the mouse. <i>Toxicological Sciences</i> , 2009 , 107, 461-72	4.4	33
179	Accumulation trends of petroleum hydrocarbons in commercial shellfish from the Galician coast (NW Spain) affected by the Prestige oil spill. <i>Chemosphere</i> , 2009 , 75, 534-41	8.4	41
178	Assessment of the pharmaceutical active compounds removal in wastewater treatment systems at enantiomeric level. Ibuprofen and naproxen. <i>Chemosphere</i> , 2009 , 75, 200-5	8.4	131
177	Surface waters are a source of polychlorinated biphenyls to the coastal atmosphere of the North-Western Mediterranean Sea. <i>Chemosphere</i> , 2009 , 75, 1144-52	8.4	38
176	Development of a methodology for the simultaneous determination of inorganic and organolead compounds using supercritical fluid extraction followed by gas chromatography-mass spectrometry and its application to environmental matrices. <i>Talanta</i> , 2009 , 80, 504-10	6.2	18
175	Preliminary screening of small-scale domestic wastewater treatment systems for removal of pharmaceutical and personal care products. <i>Water Research</i> , 2009 , 43, 55-62	12.5	175
174	Physiological responses to mercury in feral carp populations inhabiting the low Ebro River (NE Spain), a historically contaminated site. <i>Aquatic Toxicology</i> , 2009 , 93, 150-7	5.1	60
173	Assessment of cleanup needs of oiled sandy beaches: lessons from the Prestige oil spill. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	35
172	Behaviour of pharmaceutical products and biodegradation intermediates in horizontal subsurface flow constructed wetland. A microcosm experiment. <i>Science of the Total Environment</i> , 2008 , 394, 171-6	10.2	118
171	Toxicity and phototoxicity of water-accommodated fraction obtained from Prestige fuel oil and Marine fuel oil evaluated by marine bioassays. <i>Science of the Total Environment</i> , 2008 , 394, 275-82	10.2	58
170	Assessment of mercury and methylmercury pollution with zebra mussel (Dreissena polymorpha) in the Ebro River (NE Spain) impacted by industrial hazardous dumps. <i>Science of the Total Environment</i> , 2008 , 407, 178-84	10.2	74
169	Assessing human exposure to phthalic acid and phthalate esters from mineral water stored in polyethylene terephthalate and glass bottles. <i>Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment,</i> 2008 , 25, 511-8	3.2	111
168	Organic micropollutant removal in a full-scale surface flow constructed wetland fed with secondary effluent. <i>Water Research</i> , 2008 , 42, 653-60	12.5	271
167	Determination of Hg and organomercury species following SPME: a review. <i>Talanta</i> , 2008 , 77, 21-7	6.2	55
166	Hair mercury levels in an urban population from southern Italy: fish consumption as a determinant of exposure. <i>Environment International</i> , 2008 , 34, 162-7	12.9	87

(2007-2008)

165	Determination of organochlorine compounds in neuston from the Mediterranean. <i>Environmental Technology (United Kingdom)</i> , 2008 , 29, 1275-83	2.6	4
164	Determination of cyanide and volatile alkylnitriles in whole blood by headspace solid-phase microextraction and gas chromatography with nitrogen phosphorus detection. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2008 , 870, 17-21	3.2	35
163	Behavior of Emerging Pollutants in Constructed Wetlands. <i>Handbook of Environmental Chemistry</i> , 2008 , 199-217	0.8	14
162	Behavior of Emerging Pollutants in Constructed Wetlands 2007 , 199-217		2
161	Spatial and temporal trends of polycyclic aromatic hydrocarbons in wild mussels from the Cantabrian coast (N Spain) after the Prestige oil spill. <i>Journal of Environmental Monitoring</i> , 2007 , 9, 1018	3-23	26
160	Prestige oil spill. III. Fate of a heavy oil in the marine environment. <i>Environmental Science & Environmental Science & Technology</i> , 2007 , 41, 3075-82	10.3	77
159	Removal of pharmaceuticals and personal care products (PPCPs) from urban wastewater in a pilot vertical flow constructed wetland and a sand filter. <i>Environmental Science & Environmental Science & E</i>	10.3	194
158	Methylmercury determination in biota by solid-phase microextraction matrix effect evaluation. Journal of Chromatography A, 2007 , 1174, 2-6	4.5	22
157	Influence of water filtration on the determination of a wide range of dissolved contaminants at parts-per-trillion levels. <i>Analytica Chimica Acta</i> , 2007 , 583, 202-9	6.6	12
156	Occurrence and fate of polycyclic aromatic hydrocarbons in the coastal surface microlayer. <i>Marine Pollution Bulletin</i> , 2007 , 54, 186-94	6.7	53
155	Differential role of CYP2E1-mediated metabolism in the lethal and vestibulotoxic effects of cis-crotononitrile in the mouse. <i>Toxicology and Applied Pharmacology</i> , 2007 , 225, 310-7	4.6	19
154	Development and Application of the Detector-Response-Ratio Method of Identification for a Dual-Detection System. Application of GC with Electron-Capture and Nitrogen P hosphorus Detection to the Determination of Pesticides in Aqueous Matrices. <i>Chromatographia</i> , 2007 , 66, 75-79	2.1	4
153	Assessment of in vivo effects of the prestige fuel oil spill on the mediterranean mussel immune system. <i>Archives of Environmental Contamination and Toxicology</i> , 2007 , 52, 200-6	3.2	17
152	The Prestige oil spill: bacterial community dynamics during a field biostimulation assay. <i>Applied Microbiology and Biotechnology</i> , 2007 , 77, 935-45	5.7	58
151	Total mercury in the hair of children by combustion atomic absorption spectrometry (Comb-AAS). Journal of Analytical Toxicology, 2007 , 31, 144-9	2.9	34
150	Trihalomethane occurrence in chlorinated reclaimed water at full-scale wastewater treatment plants in NE Spain. <i>Water Research</i> , 2007 , 41, 3337-44	12.5	47
149	Screening ecological risk assessment of persistent organic pollutants in Mediterranean sea sediments. <i>Environment International</i> , 2007 , 33, 867-76	12.9	86
148	Distribution of polycyclic aromatic hydrocarbons (PAHs) and tributyltin (TBT) in Barcelona harbour sediments and their impact on benthic communities. <i>Environmental Pollution</i> , 2007 , 149, 104-13	9.3	84

Trace element determination by combining solid-phase microextraction hyphenated to elemental

and molecular detection techniques. Journal of Chromatographic Science, 2006, 44, 458-71

1.4

15

130

129	New approach on the alkylthiol determination in water by in situ derivatization SPME followed by GC-ECD/NPD analysis. <i>International Journal of Environmental Analytical Chemistry</i> , 2005 , 85, 543-552	1.8	7
128	Low part per trillion determination of reactive alkanethiols in wastewater by in situ derivatization-solid-phase microextraction followed by GC/MS. <i>Analytical Chemistry</i> , 2005 , 77, 6012-8	7.8	16
127	Comparison of sampling devices for the determination of polychlorinated biphenyls in the sea surface microlayer. <i>Marine Environmental Research</i> , 2005 , 59, 255-75	3.3	25
126	Effect of design parameters in horizontal flow constructed wetland on the behaviour of volatile fatty acids and volatile alkylsulfides. <i>Chemosphere</i> , 2005 , 59, 769-77	8.4	28
125	Survey of organotin compounds in rivers and coastal environments in Portugal 1999-2000. <i>Environmental Pollution</i> , 2005 , 136, 525-36	9.3	92
124	Behavior of selected pharmaceuticals in subsurface flow constructed wetlands: a pilot-scale study. <i>Environmental Science & Environmental Science & En</i>	10.3	147
123	Enrichment of organochlorine contaminants in the sea surface microlayer: An organic carbon-driven process. <i>Marine Chemistry</i> , 2005 , 96, 331-345	3.7	40
122	Characterization of lipids in complex samples using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry. <i>Journal of Chromatography A</i> , 2005 , 1086, 2-11	4.5	54
121	Development of a procedure for the determination of perfluorocarboxylic acids in sediments by pressurised fluid extraction, headspace solid-phase microextraction followed by gas chromatographic-mass spectrometric determination. <i>Journal of Chromatography A</i> , 2005 , 1083, 1-6	4.5	42
120	Effect of key design parameters on the efficiency of horizontal subsurface flow constructed wetlands. <i>Ecological Engineering</i> , 2005 , 25, 405-418	3.9	171
119	The prestige oil spill. I. Biodegradation of a heavy fuel oil under simulated conditions. <i>Environmental Toxicology and Chemistry</i> , 2005 , 24, 2203-17	3.8	93
118	Predicting single and mixture toxicity of petrogenic polycyclic aromatic hydrocarbons to the copepod Oithona davisae. <i>Environmental Toxicology and Chemistry</i> , 2005 , 24, 2992-9	3.8	84
117	Use of headspace solid-phase microextraction to characterize odour compounds in subsurface flow constructed wetland for wastewater treatment. <i>Water Science and Technology</i> , 2004 , 49, 89-98	2.2	9
116	Evaluation of sampling devices for the determination of polycyclic aromatic hydrocarbons in surface microlayer coastal waters. <i>Marine Pollution Bulletin</i> , 2004 , 48, 961-8	6.7	25
115	Determination of perfluorocarboxylic acids in aqueous matrices by ion-pair solid-phase microextraction-in-port derivatization-gas chromatography-negative ion chemical ionization mass spectrometry. <i>Journal of Chromatography A</i> , 2004 , 1042, 155-62	4.5	75
114	Improvements in the methylmercury extraction from human hair by headspace solid-phase microextraction followed by gas-chromatography cold-vapour atomic fluorescence spectrometry. Journal of Chromatography A, 2004 , 1025, 71-5	4.5	31
113	Fast solid-phase extraction-gas chromatography-mass spectrometry procedure for oil fingerprinting. Application to the Prestige oil spill. <i>Journal of Chromatography A</i> , 2004 , 1025, 133-8	4.5	70
112	Factors affecting linear alkylbenzene sulfonates removal in subsurface flow constructed wetlands. <i>Environmental Science & Environmental Science & Env</i>	10.3	49

111	Sources, distribution and behaviour of methyl tert-butyl ether (MTBE) in the Tamar Estuary, UK. <i>Chemosphere</i> , 2004 , 57, 429-37	8.4	13
110	Initial contaminant removal performance factors in horizontal flow reed beds used for treating urban wastewater. <i>Water Research</i> , 2004 , 38, 1669-78	12.5	142
109	Volatile fatty acids as malodorous compounds in wool scouring water and lanolin. Origin and characterisation. <i>Environmental Technology (United Kingdom)</i> , 2003 , 24, 1465-70	2.6	
108	Determination of phthalic monoesters in aqueous and urine samples by solid-phase microextractiondiazomethane on-fibre derivatizationd schromatography hass spectrometry. <i>Journal of Separation Science</i> , 2003 , 26, 87-96	3.4	36
107	Effect of the carbon dioxide modifier on the lipid composition of wool wax extracted from raw wool. <i>Analytica Chimica Acta</i> , 2003 , 477, 233-242	6.6	13
106	Determination of linear alkylbenzensulfonates in aqueous matrices by ion-pair solid-phase microextraction-in-port derivatization-gas chromatography-mass spectrometry. <i>Journal of Chromatography A</i> , 2003 , 999, 51-60	4.5	44
105	Accurate determination of 2,4,6-trichloroanisole in wines at low parts per trillion by solid-phase microextraction followed by GC-ECD. <i>Journal of Agricultural and Food Chemistry</i> , 2003 , 51, 3509-14	5.7	70
104	In situ sensing of volatile organic compounds in groundwater: first field tests of a mid-infrared fiber-optic sensing system. <i>Applied Spectroscopy</i> , 2003 , 57, 607-13	3.1	38
103	Determination of Irgarol 1051 in Western Mediterranean sediments. Development and application of supercritical fluid extraction-immunoaffinity chromatography procedure. <i>Water Research</i> , 2003 , 37, 3658-65	12.5	18
102	Isolation and taxonomic and catabolic characterization of a 3,6-dimethylphenanthrene-utilizing strain of Sphingomonas sp. <i>Canadian Journal of Microbiology</i> , 2003 , 49, 120-9	3.2	6
101	Trace level determination of organochlorine, organophosphorus and pyrethroid pesticides in lanolin using gel permeation chromatography followed by dual gas chromatography and gas chromatography-negative chemical ionization mass spectrometric confirmation. <i>Journal of</i>	4.5	29
100	Systematic characterisation of long-chain aliphatic esters of wool wax by gas chromatography-electron impact ionisation mass spectrometry. <i>Journal of Chromatography A</i> , 2002 , 952, 193-204	4.5	28
99	Determination of volatile alkyl sulfides in wastewater by headspace solid-phase microextraction followed by gas chromatography-mass spectrometry. <i>Journal of Chromatography A</i> , 2002 , 963, 249-57	4.5	36
98	Gas chromatographic and mass spectrometric methods for the characterisation of long-chain fatty acids: Application to wool wax extracts. <i>Analytica Chimica Acta</i> , 2002 , 465, 359-378	6.6	43
97	Determination of methylmercury in human hair by ethylation followed by headspace solid-phase microextraction-gas chromatography-cold-vapour atomic fluorescence spectrometry. <i>Journal of Chromatography A</i> , 2002 , 963, 345-51	4.5	60
96	Complete characterisation of lanolin steryl esters by sub-ambient pressure gas chromatography-mass spectrometry in the electron impact and chemical ionisation modes. <i>Journal of Chromatography A</i> , 2002 , 970, 249-58	4.5	18
95	Organochlorine Compounds in the North-western Black Sea Water: Distribution and Water Column Process. <i>Estuarine, Coastal and Shelf Science</i> , 2002 , 54, 527-540	2.9	33
94	Chapter 26 Sample preparation techniques for soil analysis. <i>Comprehensive Analytical Chemistry</i> , 2002 , 895-918	1.9	1

93	Evaluation of accelerated solvent extraction for butyltin speciation in PACS-2 CRM using double-spike isotope dilution-GC/ICPMS. <i>Analytical Chemistry</i> , 2002 , 74, 5237-42	7.8	41
92	Determination of Organic Contaminants in Landfill Leachates: A Review. <i>International Journal of Environmental Analytical Chemistry</i> , 2002 , 82, 415-430	1.8	16
91	Organotin contamination in sediments from the Western Mediterranean enclosures following 10 years of TBT regulation. <i>Water Research</i> , 2002 , 36, 905-18	12.5	233
90	Biogeochemical characterization of particulate organic matter from a coastal hydrothermal vent zone in the Aegean Sea. <i>Organic Geochemistry</i> , 2002 , 33, 1609-1620	3.1	14
89	Evaluation of capillary gas chromatography columns for the determination of free volatile amines after solid-phase microextraction. <i>Chromatographia</i> , 2001 , 54, 109-113	2.1	8
88	Biogeochemical evolution of the outflow of the Mediterranean deep-lying particulate organic matter into the northeastern Atlantic. <i>Marine Chemistry</i> , 2001 , 76, 211-231	3.7	8
87	Development and application of immunoaffinity chromatography for the determination of the triazinic biocides in seawater. <i>Journal of Chromatography A</i> , 2001 , 909, 61-72	4.5	28
86	Photolysis of PAHs in aqueous phase by UV irradiation. <i>Chemosphere</i> , 2001 , 44, 119-24	8.4	67
85	A potential source of organic pollutants into the northeastern Atlantic: the outflow of the Mediterranean deep-lying waters through the Gibraltar Strait. <i>Environmental Science & Environmental Science & Technology</i> , 2001 , 35, 2682-9	10.3	20
84	Application of gas chromatography coupled to chemical ionisation mass spectrometry following headspace solid-phase microextraction for the determination of free volatile fatty acids in aqueous samples. <i>Journal of Chromatography A</i> , 2000 , 891, 287-94	4.5	51
83	Development of a headspace solid-phase microextraction procedure for the determination of free volatile fatty acids in waste waters. <i>Journal of Chromatography A</i> , 2000 , 873, 107-15	4.5	100
82	Supercritical fluid extraction in speciation studies. <i>TrAC - Trends in Analytical Chemistry</i> , 2000 , 19, 107-1	12 4.6	34
81	Distribution of Trialkylamines and Coprostanol in San Pedro Shelf Sediments Adjacent to a Sewage Outfall. <i>Marine Pollution Bulletin</i> , 2000 , 40, 680-687	6.7	31
80	Evaluation of acute toxicity and genotoxicity of liquid products from pyrolysis of Eucalyptus grandis wood. <i>Archives of Environmental Contamination and Toxicology</i> , 2000 , 38, 169-75	3.2	27
79	Evaluation of anthropogenic and biogenic inputs into the western Mediterranean using molecular markers. <i>Marine Chemistry</i> , 1999 , 65, 195-210	3.7	38
78	Development of a novel supercritical fluid extraction procedure for lanolin extraction from raw wool. <i>Analytica Chimica Acta</i> , 1999 , 381, 39-48	6.6	23
77	Determination of Benzo[a]pyrene Diones in Air Particulate Matter with Liquid Chromatography Mass Spectrometry. <i>Environmental Science & Environmental </i>	10.3	56
76	Development of a solid-phase microextraction GC-NPD procedure for the determination of free volatile amines in wastewater and sewage-polluted waters. <i>Analytical Chemistry</i> , 1999 , 71, 3531-7	7.8	115

75	Characterization of organic compounds in soil and water affected by pyrite tailing spillage. <i>Science of the Total Environment</i> , 1999 , 242, 167-178	10.2	18
74	Physico-chemical characterization of atmospheric aerosols in a rural area affected by the Aznalcollar toxic spill, south-west Spain during the soil reclamation activities. <i>Science of the Total Environment</i> , 1999 , 242, 89-104	10.2	17
73	Sources, Distribution, and Water Column Processes of Aliphatic and Polycyclic Aromatic Hydrocarbons in the Northwestern Black Sea Water. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	133
72	Monsoon-Driven Vertical Fluxes of Organic Pollutants in the Western Arabian Sea. <i>Environmental Science & Environmental Scienc</i>	10.3	38
71	Trialkylamines and Coprostanol as Tracers of Urban Pollution in Waters from Enclosed Seas: The Mediterranean and Black Sea. <i>Environmental Science & Environmental Science & E</i>	10.3	22
70	Evaluation of desulfurization procedures for the elimination of sulfur interferences in the organotin analysis of sediments. <i>Journal of Chromatography A</i> , 1998 , 810, 245-251	4.5	15
69	Effects of complexing agents and acid modifiers on the supercritical fluid extraction of native phenyl- and butyl-tins from sediment. <i>Applied Organometallic Chemistry</i> , 1998 , 12, 577-584	3.1	6
68	Evidence for cyanobacterial inputs and heterotrophic alteration of lipids in sinking particles in the Alboran Sea (SW Mediterranean). <i>Marine Chemistry</i> , 1998 , 60, 189-201	3.7	29
67	Butyltins in sediments from Santa Monica and San Pedro basins, California. <i>Environmental Pollution</i> , 1998 , 99, 263-9	9.3	18
66	On the occurrence of microscale chemical patches in fractal aggregates. <i>Ecological Modelling</i> , 1998 , 107, 87-92	3	6
65	Intercomparison Among SFE, ASE, Soxhlet and Sonication for the Trialkylamine Determination in Sediment and Sludge. <i>International Journal of Environmental Analytical Chemistry</i> , 1998 , 72, 99-111	1.8	8
64	Complete elimination of interferences in the organotin determination by oxidation with dimethyldioxirane combined with alumina cleanup. <i>Analytical Chemistry</i> , 1998 , 70, 3703-7	7.8	28
63	Langmuir-Derived Model for Diffusion- and Reaction-Limited Adsorption of Organic Compounds on Fractal Aggregates. <i>Environmental Science & Environmental Science & Environment</i>	10.3	20
62	Input Characterization of Sedimentary Organic Contaminants and Molecular Markers in the Northwestern Mediterranean Sea by Exploratory Data Analysis. <i>Environmental Science & Eamp; Technology</i> , 1997 , 31, 3482-3490	10.3	44
61	Spatial, Vertical Distribution and Budget of Polycyclic Aromatic Hydrocarbons in the Western Mediterranean Seawater. <i>Environmental Science & Environmental Science & Environm</i>	10.3	104
60	Mass budget and dynamics of polycyclic aromatic hydrocarbons in the Mediterranean Sea. <i>Deep-Sea Research Part II: Topical Studies in Oceanography</i> , 1997 , 44, 881-905	2.3	127
59	Carbon sources and cycle in the western Mediterraneanthe use of molecular markers to determine the origin of organic matter. <i>Deep-Sea Research Part II: Topical Studies in Oceanography</i> , 1997 , 44, 781-799	2.3	58
58	PCBs in the western Mediterranean. Temporal trends and mass balance assessment. <i>Deep-Sea Research Part II: Topical Studies in Oceanography</i> , 1997 , 44, 907-928	2.3	68

57	Large volume preconcentration of dissolved hydrocarbons and polychlorinated biphenyls from seawater. Intercomparison between C18 disks and XAD-2 column. <i>Chemosphere</i> , 1997 , 35, 1669-1679	8.4	35
56	Comparison of liquid chromatography-mass spectrometry interfaces for the analysis of polar metabolites of benz[a]pyrene. <i>Freseniusi Journal of Analytical Chemistry</i> , 1997 , 359, 267-273		18
55	Spatial distribution, vertical profiles and budget of organochlorine compounds in Western Mediterranean seawater. <i>Marine Chemistry</i> , 1997 , 57, 313-324	3.7	47
54	Electron Ionization and Positive-ion Chemical Ionization Mass Spectra of N-(2-Hydroxyethyl)alkylamides. <i>Rapid Communications in Mass Spectrometry</i> , 1997 , 11, 1077-1082	2.2	6
53	Combined experimental design and information theory for the optimization of supercritical fluid extraction of organic priority pollutants from sediment. <i>Analytica Chimica Acta</i> , 1997 , 351, 377-385	6.6	9
52	Supercritical fluid extraction of priority organotin contaminants from biological matrices. <i>Analytica Chimica Acta</i> , 1997 , 355, 269-276	6.6	17
51	Aliphatic and Polycyclic Aromatic Hydrocarbons and Sulfur/Oxygen Derivatives in Northwestern Mediterranean Sediments: Spatial and Temporal Variability, Fluxes, and Budgets. <i>Environmental Science & Environmental Science & </i>	10.3	242
50	Flicker Noise in Vertical Fluxes of Particle-Associated Contaminants in the Marine Environment. <i>Environmental Science & Environmental Science & Envir</i>	10.3	2
49	Supercritical fluid extraction of atrazine and its metabolites from soil. <i>Journal of High Resolution Chromatography</i> , 1996 , 19, 23-26		9
48	Vertical fluxes of polycyclic aromatic hydrocarbons and organochlorine compounds in the western Alboran Sea (southwestern Mediterranean). <i>Marine Chemistry</i> , 1996 , 52, 75-86	3.7	92
47	Application of experimental design approach to the optimization of supercritical fluid extraction of polychlorinated biphenyls and polycyclic aromatic hydrocarbons. <i>Journal of Chromatography A</i> , 1996 , 719, 77-85	4.5	28
46	Determination of methylmercury in fish and river water samples using in situ sodium tetraethylborate derivatization following by solid-phase microextraction and gas chromatography-mass spectrometry. <i>Journal of Chromatography A</i> , 1995 , 696, 113-122	4.5	126
45	Use of Supercritical Fluid Extraction for Pirimicarb Determination in Soil. <i>Journal of Agricultural and Food Chemistry</i> , 1995 , 43, 395-400	5.7	24
44	Bioassay-directed chemical analysis of genotoxic components in urban airborne particulate matter from Barcelona (Spain). <i>Chemosphere</i> , 1995 , 30, 725-40	8.4	44
43	Molecular markers in Tokyo Bay sediments: Sources and distribution. <i>Marine Environmental Research</i> , 1995 , 40, 77-92	3.3	60
42	Spatial and temporal distribution, fluxes, and budgets of organochlorinated compounds in Northwest Mediterranean sediments. <i>Environmental Science & Environmental Science (Lamp; Technology</i> , 1995 , 29, 2519-27	10.3	144
41	Rapid determination of methyltin compounds in aqueous samples using solid phase microextraction and capillary gas chromatography following in-situ derivatization with sodium tetraethylborate. <i>Journal of High Resolution Chromatography</i> , 1995 , 18, 767-770		35
40	On-line preconcentration of selenium(IV) and selenium(VI) in aqueous matrices followed by liquid chromatography-inductively coupled plasma mass spectrometry determination. <i>Analytica Chimica Acta</i> 1995 314 183-192	6.6	39

39	Determination of nonylphenols as pentafluorobenzyl derivatives by capillary gas chromatography with electron-capture and mass spectrometric detection in environmental matrices. <i>Journal of Chromatography A</i> , 1994 , 686, 275-281	4.5	30
38	Development of a supercritical fluid extraction procedure for tributyltin determination in sediments. <i>Analytica Chimica Acta</i> , 1994 , 286, 319-327	6.6	43
37	Working Methods Paper: Critical considerations with respect to the identification of tin species in the environment. <i>Applied Organometallic Chemistry</i> , 1994 , 8, 541-549	3.1	15
36	The role of supercritical fluid extraction and chromatography in organotin speciation studies. <i>TrAC - Trends in Analytical Chemistry</i> , 1994 , 13, 327-332	14.6	26
35	Comparison of supercritical fluid extraction and liquid-liquid extraction for isolation of selected pesticides stored in freeze-dried water samples. <i>Chromatographia</i> , 1994 , 38, 502-508	2.1	22
34	In situ Derivatization and Supercritical Fluid Extraction for the Simultaneous Determination of Butyltin and Phenyltin Compounds in Sediment. <i>Analytical Chemistry</i> , 1994 , 66, 1161-1167	7.8	74
33	Sources and seasonal variability of mutagenic agents in the Barcelona City aerosol. <i>Chemosphere</i> , 1994 , 29, 441-50	8.4	46
32	Optimization of a flame photometric detector for supercritical fluid chromatography of organotin compounds. <i>Journal of Chromatography A</i> , 1993 , 636, 277-283	4.5	15
31	Supercritical fluid extraction of tributyltin and its degradation products from seawater via liquidBolid phase extraction. <i>Journal of Chromatography A</i> , 1993 , 655, 51-56	4.5	36
30	Bioassay-directed chemical analysis of genotoxic components in coastal sediments. <i>Environmental Science & Environmental Scien</i>	10.3	127
29	Distribution of surfactant markers in sediments from Santa Monica basin, southern California. <i>Marine Pollution Bulletin</i> , 1992 , 24, 403-407	6.7	33
28	Bioassay-directed chemical characterization of genotoxic agents in the dissolved and particulate water phases of the Besos and Llobregat Rivers (Barcelona, Spain). <i>Archives of Environmental Contamination and Toxicology</i> , 1992 , 23, 19-25	3.2	30
27	Use of off-line gel permeation chromatography?normal-phase liquid chromatography for the determination of polycyclic aromatic compounds in environmental samples and standard reference materials (air particulate matter and marine sediment). <i>Journal of Chromatography A</i> , 1992 , 625, 141-14	4·5 19	47
26	Tributyltin speciation in aquatic matrices by CGC-FPD and CGC-MS confirmation. <i>Mikrochimica Acta</i> , 1992 , 109, 87-91	5.8	15
25	Organotin speciation in aquatic matrices by CGC/FPD, ECD and MS, and LC/MS. <i>Freseniusi Journal of Analytical Chemistry</i> , 1991 , 339, 646-653		71
24	Characterization of cationic surfactant markers and their abiotic degradation products by CGC-EI/PICI MS. <i>Freseniusi Journal of Analytical Chemistry</i> , 1991 , 339, 212-217		6
23	Vapor-particle partitioning of hydrocarbons in Western Mediterranean urban and marine atmospheres. <i>Mikrochimica Acta</i> , 1991 , 104, 13-27	5.8	15
22	Partitioning of urban wastewater organic microcontaminants among coastal compartments. <i>Chemosphere</i> , 1991 , 23, 313-326	8.4	32

21	Identification and occurrence of brominated and nitrated phenols in estuarine sediments. <i>Marine Pollution Bulletin</i> , 1991 , 22, 603-607	6.7	17
20	Characterization of genotoxic components in sediments by mass spectrometric techniques combined with Salmonella/microsome test. <i>Archives of Environmental Contamination and Toxicology</i> , 1990 , 19, 175-84	3.2	47
19	Broad Spectrum Analysis of Ionic and Non-Ionic Organic Contaminants in Urban Wastewaters and Coastal Receiving Aquatic Systems. <i>International Journal of Environmental Analytical Chemistry</i> , 1990 , 39, 329-348	1.8	46
18	Assessment of fecal sterols and ketones as indicators of urban sewage inputs to coastal waters. <i>Environmental Science & Environmental Science & Envir</i>	10.3	315
17	Fate of cationic surfactants in the marine environment, II: Photooxidation of long-chain alkylamines in aqueous media. <i>Chemosphere</i> , 1990 , 20, 599-607	8.4	6
16	Steroid alcohols and ketones in coastal waters of the western Mediterranean: Sources and seasonal variability. <i>Marine Chemistry</i> , 1989 , 27, 79-104	3.7	28
15	Chemical composition of environmental tobacco smoke. 2. Particulate-phase compounds. <i>Environmental Science & Environmental Environm</i>	10.3	68
14	Fate of cationic surfactants in the marine environment, I. Bioconcentration of long-chain alkylnitriles and trialkylamines. <i>Chemosphere</i> , 1989 , 19, 1819-1827	8.4	6
13	Chemical composition of environmental tobacco smoke. 1. Gas-phase acids and bases. <i>Environmental Science & Environmental Environmen</i>	10.3	91
12	Characterization of polar substituted polycyclic aromatic compounds using high-resolution gas chromatography/mass spectrometry negative ion chemical ionization and positive and negative ion thermospray liquid chromatography/mass spectrometry. <i>Biological Mass Spectrometry</i> , 1988 , 16, 461-7		13
11	Identification and comparison of low-molecular-weight neutral constituents in two different coal extracts. <i>Fuel</i> , 1988 , 67, 45-57	7.1	27
10	Selective enrichment procedures for the determination of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in environmental samples by gel permeation chromatography. <i>Journal of Chromatography A</i> , 1988 , 456, 155-64	4.5	36
9	Characterization of polar polycyclic aromatic compounds in a heavy-duty diesel exhaust particulate by capillary column gas chromatography and high-resolution mass spectrometry. <i>Environmental Science & Environmental & Envi</i>	10.3	47
8	Selective Gas Chromatographic Stationary Phases for Nitrogen-Containing Polycyclic Aromatic Compounds. <i>International Journal of Environmental Analytical Chemistry</i> , 1987 , 28, 263-278	1.8	23
7	A comparison of vaporizing injectors for trace analysis in capillary gas chromatography. <i>Journal of High Resolution Chromatography</i> , 1986 , 9, 59-60		2
6	Selective Aerobic Degradation of Methyl-Substituted Polycyclic Aromatic Hydrocarbons in Petroleum by Pure Microbial Culturest. <i>International Journal of Environmental Analytical Chemistry</i> , 1986 , 23, 289-303	1.8	71
5	Selective aerobic degradation of linear alkylbenzenes by pure microbial cultures. <i>Chemosphere</i> , 1986 , 15, 595-598	8.4	46
4	Degradation of aromatic petroleum hydrocarbons by pure microbial cultures. <i>Chemosphere</i> , 1984 , 13, 593-601	8.4	33

,	hydrocarbons. <i>Journal of High Resolution Chromatography</i> , 1983 , 6, 605-611		-/
2	Evaluation of glass capillary columns for geochemical analysis. <i>Chromatographia</i> , 1982 , 16, 271-274	2.1	9
1	Sources and Fate of Organic Contaminants in the Marine Environment323-370		0

Recent contributions of high resolution gas chromatography to the analysis of environmental