Anchasa Pramuanjaroenkij

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2054387/publications.pdf

Version: 2024-02-01

26 papers 2,562 citations

8 h-index 10 g-index

27 all docs

27 docs citations

times ranked

27

2247 citing authors

#	Article	IF	CITATIONS
1	Experimental Investigation of Thermal and Hydraulic Performance of a Plate Heat Exchanger Using Nanofluids. Journal of Engineering Physics and Thermophysics, 2019, 92, 783-796.	0.2	5
2	Professor Sadik Kakaç on His 85th Birthday. Heat and Mass Transfer, 2019, 55, 933-935.	1.2	0
3	Numerical Study of Mixing Thermal Conductivity Models for Nanofluid Heat Transfer Enhancement. Journal of Engineering Physics and Thermophysics, 2018, 91, 104-114.	0.2	21
4	The Development of a Simple Alternative Hybrid Engine for Gasoline, LPG and Biogas., 2018,,.		0
5	THE EXPERIMENTAL INVESTIGATION OF A DOUBLE PIPE HEAT EXCHANGER INSTALLED INSIDE A SPLIT-TYPE AIR-CONDITIONING SYSTEM. , 2018, , .		O
6	Development in Rubber Preparation for Endoscopic Training Simulator. Advances in Materials Science and Engineering, 2016, 2016, 1-8.	1.0	1
7	Convective Heat Transfer Enhancement with Nanofluids: A State-of-the-Art Review., 2016,, 55-98.		О
8	Analysis of Convective Heat Transfer Enhancement by Nanofluids: Single-Phase and Two-Phase Treatments. Journal of Engineering Physics and Thermophysics, 2016, 89, 758-793.	0.2	23
9	Single-phase and two-phase treatments of convective heat transfer enhancement with nanofluids – A state-of-the-art review. International Journal of Thermal Sciences, 2016, 100, 75-97.	2.6	144
10	THE PERMEABILITY EFFECTS OF COPPER-NANOFLUID FLOW WITH USING THE POROUS MEDIA MODEL. , 2015, , .		3
11	NUMERICAL STUDY OF NANOFLUID HEAT TRANSFER ENHANCEMENT WITH MIXING THERMAL CONDUCTIVITY MODELS. Computational Thermal Sciences, 2014, 6, 1-12.	0.5	11
12	THE STUDY OF THE HEATED AIR FLOW PATTERNS FROM THE CONDENSING UNIT EFFECTING ON THE AIR CONDITIONING EFFICIENCY AND THE DRYING APPLICATION. , 2014, , .		0
13	NANOFLUIDS FLOW SIMULASION AS THE FLOW THROUGH THE POROUS MEDIA. , 2014, , .		0
14	Numerical study of turbulence nanofluid flow to distinguish models for in-house programming. , 2013, , .		3
15	Development and Study of Self-Sustained Electrochemical Promotion Catalysts for Hydrocarbon Reforming. ECS Transactions, 2013, 58, 243-254.	0.3	9
16	A Study of Waste, Biogas and Waste-to-Energy: A Sakon Nakhon Municipality Landfill Case. Advanced Science Letters, 2013, 19, 95-100.	0.2	0
17	Relationships Between Hematocrit and Sample Flows on Lab-on-a-Chip. , 2013, , .		0
18	NUMERICAL STUDY OF NANOFLUID HEAT TRANSFER ENHANCEMENT WITH MIXING THERMAL CONDUCTIVITY MODELS. , 2012, , .		0

#	Article	IF	CITATIONS
19	PRESSURE DROP AND HEAT TRANSFER IN SPIRALLY CORRUGATED TUBE FOR A COUNTER-FLOW HEAT EXCHANGER., 2012,,.		O
20	Numerical analysis of indirect internal reforming with self-sustained electrochemical promotion catalysts. International Journal of Hydrogen Energy, 2010, 35, 6482-6489.	3.8	12
21	Simulation of Indirect Internal Reforming With Self-Sustained Electrochemical Promotion Catalysts in a Planar Solid Oxide Fuel Cell Anode. , 2010, , .		O
22	Review of convective heat transfer enhancement with nanofluids. International Journal of Heat and Mass Transfer, 2009, 52, 3187-3196.	2.5	1,658
23	A review of numerical modeling of solid oxide fuel cells. International Journal of Hydrogen Energy, 2007, 32, 761-786.	3.8	458
24	A New Procedure for Determining Minimum Sampling Points for Tolerance Evaluation of High Precision Mechanical Parts. Key Engineering Materials, 0, 749, 191-196.	0.4	0
25	A Standard Procedure for Development Performance Map of CNC Machining Centers by Using Double Ball-Bar. Key Engineering Materials, 0, 749, 185-190.	0.4	O
26	Convective Heat Transfer. , 0, , .		67