Georgios C Mavropoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/205413/publications.pdf

Version: 2024-02-01

26 papers 955 citations

623734 14 h-index 19 g-index

26 all docs 26 docs citations

times ranked

26

697 citing authors

#	Article	IF	Citations
1	Exergy evaluation of equivalence ratio, compression ratio and residual gas effects in variable compression ratio spark-ignition engine using quasi-dimensional combustion modeling. Energy, 2022, 244, 123080.	8.8	10
2	Investigating the EGR rate and temperature impact on diesel engine combustion and emissions under various injection timings and loads by comprehensive two-zone modeling. Energy, 2018, 157, 990-1014.	8.8	95
3	Potential for efficiency improvement of four-stroke marine diesel gensets by utilisation of exhaust gas energy. International Journal of Global Warming, 2016, 10, 133.	0.5	4
4	Development and validation of a new turbocharger simulation methodology for marine two stroke diesel engine modelling and diagnostic applications. Energy, 2015, 91, 952-966.	8.8	29
5	Efficiency Improvement of Large Scale 2-Stroke Diesel Engines Through the Recovery of Exhaust Gas Using a Rankine Cycle. Procedia, Social and Behavioral Sciences, 2012, 48, 1444-1453.	0.5	17
6	Improvement of bottoming cycle efficiency and heat rejection for HD truck applications by utilization of EGR and CAC heat. Energy Conversion and Management, 2012, 53, 19-32.	9.2	55
7	Experimental study of the interactions between long and short-term unsteady heat transfer responses on the in-cylinder and exhaust manifold diesel engine surfaces. Applied Energy, 2011, 88, 867-881.	10.1	24
8	Analysis and evaluation of the thermal shock phenomena in the in-cylinder surfaces of a DI diesel engine during its transient operation. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2011, 225, 1265-1289.	1.9	2
9	Comparative design study of a diesel exhaust gas heat exchanger for truck applications with conventional and state of the art heat transfer enhancements. Applied Thermal Engineering, 2010, 30, 935-947.	6.0	71
10	Effects of transient diesel engine operation on its cyclic heat transfer: an experimental assessment. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2009, 223, 1373-1394.	1.9	8
11	Effect of exhaust gas recirculation (EGR) temperature for various EGR rates on heavy duty DI diesel engine performance and emissions. Energy, 2008, 33, 272-283.	8.8	221
12	Experimental evaluation of local instantaneous heat transfer characteristics in the combustion chamber of air-cooled direct injection diesel engine. Energy, 2008, 33, 1084-1099.	8.8	19
13	Experimental investigation to develop a methodology for estimating the compression condition of DI Diesel engines. Energy Conversion and Management, 2006, 47, 1-18.	9.2	14
14	Experimental and theoretical study of the short term response temperature transients in the cylinder walls of a diesel engine at various operating conditions. Applied Thermal Engineering, 2004, 24, 679-702.	6.0	75
15	Measurements and analysis of load and speed effects on the instantaneous wall heat fluxes in a direct injection air-cooled diesel engine. International Journal of Energy Research, 2000, 24, 587-604.	4.5	19
16	Experimental instantaneous heat fluxes in the cylinder head and exhaust manifold of an air-cooled diesel engine. Energy Conversion and Management, 2000, 41, 1265-1281.	9.2	65
17	Modelling the transient heat transfer in the ceramic combustion chamber walls of a low heat rejection diesel engine. International Journal of Vehicle Design, 1999, 22, 195.	0.3	20
18	Components heat transfer studies in a low heat rejection DI diesel engine using a hybrid thermostructural finite element model. Applied Thermal Engineering, 1998, 18, 301-316.	6.0	32

#	Article	IF	CITATIONS
19	Study of the steady and transient temperature field and heat flow in the combustion chamber components of a medium speed diesel engine using finite element analyses. International Journal of Energy Research, 1996, 20, 437-464.	4.5	31
20	An Integrated Transient Analysis Simulation Model Applied in Thermal Loading Calculations of an Air-Cooled Diesel Engine Under Variable Speed and Load Conditions. , 0, , .		16
21	Potential Benefits in Heavy Duty Diesel Engine Performance and Emissions from the Use of Variable Compression Ratio., 0,,.		12
22	Use of Water Emulsion and Intake Water Injection as NOx Reduction Techniques for Heavy Duty Diesel Engines. , 0, , .		57
23	Comparative Evaluation of EGR, Intake Water Injection and Fuel/Water Emulsion as NOx Reduction Techniques for Heavy Duty Diesel Engines., 0, , .		41
24	Experimental Assessment of Instantaneous Heat Transfer in the Combustion Chamber and Exhaust Manifold Walls of Air-Cooled Direct Injection Diesel Engine. SAE International Journal of Engines, 0, 1, 888-912.	0.4	8
25	Experimental Investigation of Instantaneous Cyclic Heat Transfer in the Combustion Chamber and Exhaust Manifold of a DI Diesel Engine under Transient Operating Conditions. , 0, , .		10
26	Exhaust Phases in a DI Diesel Engine Based on Instantaneous Cyclic Heat Transfer Experimental Data. , 0, , .		0