Michael S Moats

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2054082/publications.pdf Version: 2024-02-01

#	ARTICLE	IF	CITATIONS
1	Solubility of bismuth, antimony and arsenic in synthetic and industrial copper electrorefining electrolyte. Hydrometallurgy, 2022, 208, 105807.	4.3	2
2	Nodule Formation on Copper Electrodeposits in the Rotating Cylinder Hull Cell. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2022, 53, 561-570.	2.1	4
3	Stainless steel substrate pretreatment effects on copper nucleation and stripping during copper electrowinning. Journal of Applied Electrochemistry, 2021, 51, 219-233.	2.9	9
4	Removal of Sb Impurities in Copper Electrolyte and Evaluation of as and Fe Species in an Electrorefining Plant. Metals, 2021, 11, 902.	2.3	10
5	Towards resilient and sustainable supply of critical elements from the copper supply chain: A review. Journal of Cleaner Production, 2021, 307, 127207.	9.3	31
6	Effective Copper Diffusion Coefficients in CuSO4–H2SO4 Electrowinning Electrolytes. Minerals, Metals and Materials Series, 2020, , 1237-1247.	0.4	3
7	Efficient electrochemical recovery of fine tellurium powder from hydrochloric acid media via mass transfer enhancement. Separation and Purification Technology, 2018, 203, 117-123.	7.9	29
8	Energy Efficiency of Electrowinning. Green Energy and Technology, 2018, , 213-232.	0.6	3
9	Removal of Antimony and Bismuth from Copper Electrorefining Electrolyte: Part II—An Investigation of Two Proprietary Solvent Extraction Extractants. Jom, 2018, 70, 2856-2863.	1.9	14
10	Removal of Antimony and Bismuth from Copper Electrorefining Electrolyte: Part I—A Review. Jom, 2018, 70, 2033-2040.	1.9	21
11	Examination of copper electrowinning smoothing agents. Part I: A review. Minerals and Metallurgical Processing, 2016, 33, 7-13.	0.7	2
12	Examination of copper electrowinning smoothing agents. Part II: Fundamental electrochemical examination of DXG-F7. Minerals and Metallurgical Processing, 2016, 33, 14-22.	0.7	4
13	Examination of copper electrowinning smoothing agents. Part IV: Nucleation and growth of copper on stainless steel. Minerals and Metallurgical Processing, 2016, 33, 39-46.	0.7	5
14	Examination of copper electrowinning smoothing agents. Part III. Chloride interaction with HydroStar and Cyquest N-900. Minerals and Metallurgical Processing, 2016, 33, 31-38.	0.7	2
15	Electrolytic recovery of bismuth and copper as a powder from acidic sulfate effluents using an emew® cell. RSC Advances, 2015, 5, 50372-50378.	3.6	22
16	Understanding the Agglomeration Behavior of Selected Copper Ores Using Statistical Design of Experiments. Mineral Processing and Extractive Metallurgy Review, 2015, 36, 13-25.	5.0	6
17	Recent Trends in the Processing of Enargite Concentrates. Mineral Processing and Extractive Metallurgy Review, 2014, 35, 283-367.	5.0	44

18 Nickel and Cobalt Production. , 2014, , 625-669.

MICHAEL S MOATS

#	Article	IF	CITATIONS
19	An Update to "Recent Trends in the Processing of Enargite Concentrates― Mineral Processing and Extractive Metallurgy Review, 2014, 35, 390-422.	5.0	27
20	Hydrometallurgical Processing. , 2014, , 949-982.		4
21	Crushed ore agglomeration and its control for heap leach operations. Minerals Engineering, 2013, 41, 53-70.	4.3	62
22	Evaluation of liquid retention capacity measurements as a tool for estimating optimal ore agglomeration moisture content. International Journal of Mineral Processing, 2013, 119, 58-64.	2.6	9
23	Flowsheet development, process simulation and economic feasibility analysis for novel suspension ironmaking technology based on natural gas: Part 3 – Economic feasibility analysis. Ironmaking and Steelmaking, 2013, 40, 44-49.	2.1	35
24	Flowsheet development, process simulation and economic feasibility analysis for novel suspension ironmaking technology based on natural gas: Part 2 – Flowsheet and simulation for ironmaking combined with steam methane reforming. Ironmaking and Steelmaking, 2013, 40, 32-43.	2.1	15
25	Characteristics of Nickel Laterite Crushed Ore Agglomerates. , 2013, , 125-139.		0
26	High Current Density Electrowinning of Nickel in EMEW® Cells. , 2013, , 191-199.		0
27	Flowsheet development, process simulation and economic feasibility analysis for novel suspension ironmaking technology based on natural gas: Part 1 – Flowsheet and simulation for ironmaking with reformerless natural gas. Ironmaking and Steelmaking, 2012, 39, 398-408.	2.1	49
28	Indirect Electrochemical Cr(III) Oxidation in KOH Solutions at an Au Electrode: The Role of Oxygen Reduction Reaction. Journal of Physical Chemistry B, 2012, 116, 7531-7537.	2.6	38
29	The stability of selected sulfide minerals in sulfuric acid and acidic thiocyanate solutions. Electrochimica Acta, 2012, 78, 133-138.	5.2	9
30	Recent advances in the application of X-ray computed tomography in the analysis of heap leaching systems. Minerals Engineering, 2012, 35, 75-86.	4.3	55
31	Thiocyanate hydrometallurgy for the recovery of gold. Part I: Chemical and thermodynamic considerations. Hydrometallurgy, 2012, 113-114, 1-9.	4.3	51
32	Thiocyanate hydrometallurgy for the recovery of gold. Part IV: Solvent extraction of gold with Alamine 336. Hydrometallurgy, 2012, 113-114, 25-30.	4.3	25
33	Thiocyanate hydrometallurgy for the recovery of gold Hydrometallurgy, 2012, 113-114, 10-18.	4.3	27
34	Thiocyanate hydrometallurgy for the recovery of gold. Part V: Process alternatives for solution concentration and purification. Hydrometallurgy, 2012, 113-114, 31-38.	4.3	17
35	Thiocyanate hydrometallurgy for the recovery of goldPart III: Thiocyanate stability. Hydrometallurgy, 2012, 113-114, 19-24.	4.3	15
36	Acid bake-leach process for the treatment of enargite concentrates. Hydrometallurgy, 2012, 119-120, 30-39.	4.3	25

MICHAEL S MOATS

#	Article	IF	CITATIONS
37	Electrowinning of Nickel from Purified Nickel Solutions. , 2011, , 327-345.		14
38	Modulated Cr(III) oxidation in KOH solutions at a gold electrode: Competition between disproportionation and stepwise electron transfer. Electrochimica Acta, 2011, 56, 8311-8318.	5.2	30
39	Process Simulation and Economic Feasibility Analysis for a Hydrogenâ€Based Novel Suspension Ironmaking Technology. Steel Research International, 2011, 82, 951-963.	1.8	50
40	Thiourea–thiocyanate leaching system for gold. Hydrometallurgy, 2011, 106, 58-63.	4.3	60
41	Wet chemical synthesis of high aspect ratio magnetite rods. Powder Technology, 2011, 212, 439-444.	4.2	8
42	The interaction of thiourea and formamidine disulfide in the dissolution of gold in sulfuric acid solutions. Minerals Engineering, 2010, 23, 698-704.	4.3	36
43	Gold dissolution in acidic thiourea and thiocyanate solutions. Electrochimica Acta, 2010, 55, 3643-3649.	5.2	37
44	Evaluation of the Effect of Copper Electrowinning Parameters on Current Efficiency and Energy Consumption Using Surface Response Methodology. ECS Transactions, 2010, 28, 295-306.	0.5	9
45	Using Electrochemical Impedance Spectroscopy to Investigate Gold Dissolution in Thiourea and Thiocyanate Acid Solutions. ECS Transactions, 2010, 28, 213-221.	0.5	8
46	Wet film application techniques and their effects on the stability of RuO2–TiO2 coated titanium anodes. Journal of Applied Electrochemistry, 2009, 39, 107-116.	2.9	30
47	Morphological and electrochemical investigation of RuO2–Ta2O5 oxide films prepared by the Pechini–Adams method. Journal of Applied Electrochemistry, 2008, 38, 767-775.	2.9	57
48	Will lead-based anodes ever be replaced in aqueous electrowinning?. Jom, 2008, 60, 46-49.	1.9	231
49	Ruthenium Palladium Oxide-Coated Titanium Anodes for Low-Current-Density Oxygen Evolution. Journal of the Electrochemical Society, 2008, 155, E101.	2.9	12
50	A Bright Future for copper electrowinning. Jom, 2007, 59, 34-36.	1.9	33
51	Single Particle Microelectrodes for Electrochemical Analysis of Sulfide Flotation Processes. ECS Transactions, 2006, 2, 21-33.	0.5	3
52	Inhibiting Unwanted Redox Reactions with Valve Metal Oxide Topcoats on Dimensionally Stable Anodes. ECS Transactions, 2006, 2, 87-94.	0.5	0
53	Mesh-on-lead anodes for copper electrowinning. Jom, 2003, 55, 46-48.	1.9	20
54	The effect of copper, acid, and temperature on the diffusion coefficient of cupric ions in simulated electrorefining electrolytes. Hydrometallurgy, 2000, 56, 255-268.	4.3	67